DOI QR코드

DOI QR Code

Exploring Branch Structure across Branch Orders and Species Using Terrestrial Laser Scanning and Quantitative Structure Model

지상형 라이다와 정량적 구조 모델을 이용한 분기별, 종별 나무의 가지 구조 탐구

  • Seongwoo Jo (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University ) ;
  • Tackang Yang (Interdisciplinary Program in Landscape Architecture, Seoul National University)
  • 조성우 (서울대학교 농업생명과학대학 조경. 지역시스템공학부 조경학전공) ;
  • 양태강 (서울대학교 환경대학원 협동과정 조경학)
  • Received : 2023.12.06
  • Accepted : 2024.03.08
  • Published : 2024.03.30

Abstract

Considering the significant relationship between a tree's branch structure and physiology, understanding the detailed branch structure is crucial for fields such as species classification, and 3D tree modelling. Recently, terrestrial laser scanning (TLS) and quantitative structure model (QSM) have enhanced the understanding of branch structures by capturing the radius, length, and branching angle of branches. Previous studies examining branch structure with TL S and QSM often relied on mean or median of branch structure parameters, such as the radius ratio and length ratio in parent-child relationships, as representative values. Additionally, these studies have typically focused on the relationship between trunk and the first order branches. This study aims to explore the distribution of branch structure parameters up to the third order in Aesculus hippocastanum, Ginkgo biloba, and Prunus yedoensis. The gamma distribution best represented the distributions of branch structure parameters, as evidenced by the average of Kolmogorov-Smirnov statistics (radius = 0.048; length = 0.061; angle = 0.050). Comparisons of the mode, mean, and median were conducted to determine the most representative measure indicating the central tendency of branch structure parameters. The estimated distributions showed differences between the mode and mean (average of normalized differences for radius ratio = 11.2%; length ratio = 17.0%; branching angle = 8.2%), and between the mode and median (radius ratio = 7.5%; length ratio = 11.5%; branching angle = 5.5%). Comparisons of the estimated distributions across branch orders and species were conducted, showing variations across branch orders and species. This study suggests that examining the estimated distribution of the branch structure parameter offers a more detailed description of branch structure, capturing the central tendencies of branch structure parameters. We also emphasize the importance of examining higher branch orders to gain a comprehensive understanding of branch structure, highlighting the differences across branch orders.

나무의 가지 구조와 생리학 사이의 중요한 관계를 고려할 때 가지 구조를 이해하는 것은 수종의 분류나 3D 나무 모델링과 같은 분야에 중요하다. 지상형 라이다는 나무의 구조를 자세히 포착하고 정량적 구조 모델은 지상형 라이다로부터 얻어진 포인트 클라우드에서 가지의 반경과 길이의 계산을 가능하게 한다. 선행 연구에서는 반경 비율이나 길이 비율 등 가지의 구조를 나타내는 인자의 대푯값으로 평균 또는 중앙값에 의존하거나 줄기와 1분기 가지의 관계만을 다루었다. 본 연구는 가시칠엽수, 은행나무, 왕벚나무에서 부모와 자식 가지 사이의 반경 비율, 길이 비율 및 분지각 세 가지 인자에 대해 3분기 가지까지 인자들의 추정 분포를 살펴보고 추정 분포들을 분기별, 종별로 비교하는 것을 목표로 한다. 인자들에 적합한 분포를 알아보기 위해 인자들을 여러 확률 분포로 추정해 보았고, 평균 Kolmogorov-Smirnov 통계량에 의거해 각각 그 수치가 반경의 경우 0.048, 길이의 경우 0.061, 각도의 경우 0.050으로 감마 분포가 최적의 분포로 선택되었다. 추정된 분포 내에서 최빈값과 평균값, 최빈값과 중앙값 사이의 차이를 정규화 한 평균은 반경에 경우 11.2% 및 7.5%, 길이에 경우 17.0% 및 11.5%, 분지각의 경우 8.2% 및 5.5%로 상당한 차이를 보였다. 추정된 분포 사이에서 분기별, 종별 비교 분석을 수행했으며, 그 결과 인자들로부터 추정된 분포는 분기와 종에 따라 다양한 분포 양상을 보였다. 본 연구는 이러한 인자들의 확률 분포를 조사하는 것이 가지 구조에 대해 더 상세한 묘사를 제공할 수 있음 시사한다. 또한 가지 구조의 포괄적인 이해를 위해 더 높은 분기의 가지를 조사하는 것의 중요성을 강조한다.

Keywords

Acknowledgement

This research was conducted with the support of the Technology Development Project for Creation and Management of Ecosystem based Carbon Sinks (202300218237) through KEITI, Ministry of Environment.

References

  1. Akerblom, M., P. Raumonen, R. Makipaa, and M. Kaasalainen, 2017: Automatic tree species recognition with quantitative structure models. Remote Sensing of Environment 191, 1-12. https://doi.org/10.1016/j.rse.2016.12.002
  2. Berger, V. W., and Y. Zhou, 2014: Kolmogorov-Smirnov Test: Overview. Wiley StatsRef: Statistics Reference Online.
  3. Bickel, D. R., 2003: Robust and efficient estimation of the mode of continuous data: the mode as a viable measure of central tendency. Journal of Statistical Computation and Simulation 73, 899-912. https://doi.org/10.1080/0094965031000097809
  4. Calders, K., J. Adams, J. Armston, H. Bartholomeus, S. Bauwens, L. P. Bentley, J. Chave, F. Mark Danson, M. Demol, M. Disney, R. Gaulton, S. M. K. Moorthy, S. R. Levick, N. Saarinen, C. Schaaf, A. Stovall, L. Terryn, P. Wilkes, and H. Verbeeck, 2020: Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment 251, 112102.
  5. Delignette-Muller, M. L., and C. Dutang, 2015: fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software 64, 1-34.
  6. Disney, M. I., M. Boni Vicari, A. Burt, K. Calders, S. Lewis, P. Raumonen, and P. Wilkes, 2018: Weighing trees with lasers: Advances, challenges and opportunities. Interface Focus 8, 20170048.
  7. Huang, H., Z. Li, P. Gong, X. Cheng, N. Clinton, C. Cao, W. Ni, and L. Wang, 2011: Automated Methods for Measuring DBH and Tree Heights with a Commercial Scanning Lidar. Photogrammetric Engineering and Remote Sensing 77, 219-227. https://doi.org/10.14358/PERS.77.3.219
  8. Juchheim, J., P. Annighofer, C. Ammer, K. Calders, P. Raumonen, and D. Seidel, 2017: How management intensity and neighborhood composition affect the structure of beech (Fagus sylvatica L.) trees. Trees 31, 1723-1735. https://doi.org/10.1007/s00468-017-1581-z
  9. Khorana, A., A. Pareek, M. Ollivier, S. J. Madjarova, K. N. Kunze, B. U. Nwachukwu, J. Karlsson, E. M. Marigi, and R. J. Williams, 2023: Choosing the appropriate measure of central tendency: mean, median, or mode?. Knee Surgery, Sports Traumatology, Arthroscopy 31, 12-15.
  10. Lau, A., C. Martius, H. Bartholomeus, A. Shenkin, T. Jackson, Y. Malhi, M. Herold, and L. P. Bentley, 2019: Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Forest Ecology and Management 439, 132-145. https://doi.org/10.1016/j.foreco.2019.02.019
  11. Lovell, J. L., D. L. B. Jupp, G. J. Newnham, and D. S. Culvenor, 2011: Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS Journal of Photogrammetry and Remote Sensing 66, 46-55. https://doi.org/10.1016/j.isprsjprs.2010.08.006
  12. Loy, A., L. Follett, and H. Hofmann., 2016: Variations of Q-Q Plots: The Power of Our Eyes!. The American Statistician 70, 202-214. https://doi.org/10.1080/00031305.2015.1077728
  13. Malhi, Y., T. Jackson, L. Bentley, A. L. Sarmiento, A. Shenkin, M. Herold, K. Calders, H. Bartholomeus, and M. Disney, 2018: New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8, 20170052.
  14. Manikandan, S., 2011: Measures of central tendency: Median and mode. J Pharmacol Pharmacother 2, 214-215. https://doi.org/10.4103/0976-500X.85931
  15. Raumonen, P., M. Kaasalainen, M. Akerblom, S. Kaasalainen, H. Kaartinen, M. Vastaranta, M. Holopainen, M. Disney, and P. Lewis, 2013: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sensing 5, 491-520. https://doi.org/10.3390/rs5020491
  16. Tsugawa, S., K. Teratsuji, F. Okura, K. Noshita, M. Tateno, J. Zhang, and T. Demura, 2022: Exploring the mechanical and morphological rationality of tree branch structure based on 3D point cloud analysis and the finite element method. Scientific Reports 12, 4054.
  17. Wilkes, P., A. Lau, M. Disney, K. Calders, A. Burt, J. G. de Tanago, H. Bartholomeus, B. Brede, and M. Herold, 2017: Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment 196, 140-153. https://doi.org/10.1016/j.rse.2017.04.030
  18. Yang, M., X. Zhou, Z. Liu, P. Li, J. Tang, B. Xie, and C. Peng., 2022: A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests 13, 616.
  19. Zhang, W., P. Wan, T. Wang, S. Cai, Y. Chen, X. Jin, and G. Yan, 2019: A Novel Approach for the Detection of Standing Tree Stems from Plot-Level Terrestrial Laser Scanning Data. Remote Sensing 11, 211.