DOI QR코드

DOI QR Code

SSP Climate Change Scenarios with 1km Resolution Over Korean Peninsula for Agricultural Uses

농업분야 활용을 위한 한반도 1km 격자형 SSP 기후변화 시나리오

  • Jina Hur (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Jae-Pil Cho (Integrated Watershed Management Institute) ;
  • Sera Jo (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Kyo-Moon Shim (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Yong-Seok Kim (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Min-Gu Kang (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Chan-Sung Oh (Integrated Watershed Management Institute) ;
  • Seung-Beom Seo (International School of Urban Sciences, University of Seoul) ;
  • Eung-Sup Kim (Climate Change Assessment Division, National Institute of Agricultural Sciences)
  • 허지나 (국립농업과학원 기후변화평가과) ;
  • 조재필 (유역통합관리연구원) ;
  • 조세라 (국립농업과학원 기후변화평가과) ;
  • 심교문 (국립농업과학원 기후변화평가과) ;
  • 김용석 (국립농업과학원 기후변화평가과) ;
  • 강민구 (국립농업과학원 기후변화평가과) ;
  • 오찬성 (유역통합관리연구원) ;
  • 서승범 (서울시립대학교) ;
  • 김응섭 (국립농업과학원 기후변화평가과)
  • Received : 2023.10.25
  • Accepted : 2024.03.25
  • Published : 2024.03.30

Abstract

The international community adopts the SSP (Shared Socioeconomic Pathways) scenario as a new greenhouse gas emission pathway. As part of efforts to reflect these international trends and support for climate change adaptation measure in the agricultural sector, the National Institute of Agricultural Sciences (NAS) produced high-resolution (1 km) climate change scenarios for the Korean Peninsula based on SSP scenarios, certified as a "National Climate Change Standard Scenario" in 2022. This paper introduces SSP climate change scenario of the NAS and shows the results of the climate change projections. In order to produce future climate change scenarios, global climate data produced from 18 GCM models participating in CMIP6 were collected for the past (1985-2014) and future (2015-2100) periods, and were statistically downscaled for the Korean Peninsula using the digital climate maps with 1km resolution and the SQM method. In the end of the 21st century (2071-2100), the average annual maximum/minimum temperature of the Korean Peninsula is projected to increase by 2.6~6.1℃/2.5~6.3℃ and annual precipitation by 21.5~38.7% depending on scenarios. The increases in temperature and precipitation under the low-carbon scenario were smaller than those under high-carbon scenario. It is projected that the average wind speed and solar radiation over the analysis region will not change significantly in the end of the 21st century compared to the present. This data is expected to contribute to understanding future uncertainties due to climate change and contributing to rational decision-making for climate change adaptation.

국제사회는 IPCC를 중심으로 SSP (Shared Socioeconomic Pathways) 기후변화 시나리오를 새로운 온실가스 변화 경로로 채택하고, 신기후변화 시나리오 기반으로 다양한 규모와 형태로 기후변화를 전망하고 분석하고 있다. 국립농업과학원은 이러한 국제적 동향을 반영하고 농업부문 기후변화 적응대책 지원을 위한 노력의 일환으로 신규 온실가스 경로에 기반한 한반도 상세(1km) 기후변화 시나리오를 산출하였다. 본 논문은 2022년 "국가 기후변화 표준 시나리오" 로 인증받은 국립농업과학원의 SSP 기후변화 시나리오 자료를 소개하고, 기후변화 전망 결과를 보여주고자 한다. 한반도의 미래 기후 변화에 대한 전망 정보를 생산하기 위해 CMIP6에 참여한 18개의 GCM 모형에서 생산된 전지구 규모의 기후 자료를 과거기간(1985-2014)과 미래기간(2015-2100)에 대해 수집하고, 1km 격자형 한반도 전자기후도와 SQM 방법을 이용하여 한반도 영역에 대해 통계적 상세화를 수행하였다. 21세기 후반기(2071~2100년), 한반도의 연평균 최고, 최저기온은 온실가스 배출 정도에 따라 각각 2.6~6.1 ℃, 2.5~6.3 ℃ 상승하고, 연강수량은 21.5~38.7 % 상승하는 것으로 전망되었다. 저탄소 시나리오(SSP1-2.6)의 경우 기온과 강수량 상승이 적게 나타나, 탄소 배출을 감축하는 경우에 상승 폭을 억제할 수 있을 것으로 전망되었다. 21세기 후반기의 우리나라 평균 풍속과 일사량은 상대적으로 현재 대비 미래에 큰 변화가 없을 것으로 전망하고 있다. 이 자료는 기후변화에 따를 미래의 불확실성을 이해하고 기후변화 적응을 위한 합리적인 의사결정에 기여할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 "신농업기후변화대응체계구축사업(과제번호: RS-2021-RD009055)"의 지원으로 수행되었습니다.

References

  1. Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M.-A. Foujols, Y. Meurdesoif, P. Cadule, M. Devilliers, E. Dupont, and T. Lurton, 2019: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1532
  2. Cho, J., W. Cho, and I. Jung, 2018: RSQM: Statistical downscaling toolkit for Climate Change Scenario Using Nonparametric Quantile Mapping. http://cran.r-project.org/web/packages/rSQM/index.html/ (Accessed 22 July, 2020).
  3. Choi, S. K., J. Jeong, S. J. Yeob, M. Kim, J. H. Kim, and M. K. Kim, 2020: Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble. Journal of the Korean Society of Agricultural Engineers 62(5), 47-62. (in Korean with English abstract).
  4. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33, 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  5. Dix, M., D. Bi, P. Dobrohotoff, R. Fiedler, I. Harman, R. Law, C. Mackallah, S. Marsland, S. O'Farrell, H. Rashid, J. Srbinovsky, A. Sullivan, C. Trenham, P. Vohralik, I. Watterson, G. Williams, M. Woodhouse, R. Bodman, Dias, F. B., C.-M. Domingues, N. Hannah, A. Heerdegen, A. Savita, S. Wales, C. Allen, K. Druken, B. Evans, C. Richards, S.-M. Ridzwan, D. Roberts, J. Smillie, K. Snow, M. Ward, and R. Yang, 2019: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285
  6. FAO, 2020: Climate change: Unpacking the burden on food safety. Food safety and quality series No. 8, 176. Retrieved from https://www.fao.org/documents/card/en/c/ca8185en/.
  7. Hur, J., J.-P. Cho, S. Jo, K.-M. Shim, Y.-S. Kim, M.-G. Kang, C.-S. Oh, S.-B. Seo, and E.-S. Kim. 2023: Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model. Korean Journal of Agricultural and Forest Meteorology 25(4), 404-414. (in Korean with English abstract).
  8. IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5℃. An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.) World Meteorological Organization, Geneva, Switzerland, 32 pp.
  9. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis., Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L., Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
  10. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647.
  11. John, J. G., C. Blanton, C. McHugh, A. Radhakrishnan, K. Rand, H. Vahlenkamp, C. Wilson, N. T. Zadeh, J. P. Dunne, R. Dussin, L. W. Horowitz, J. P. Krasting, P. Lin, S. Malyshev, V. Naik, J. Ploshay, E. Shevliakova, L. Silvers, C. Stock, M. Winton, and Y. Zeng, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414
  12. Kim, J. U., T. J. Kim, D. H. Kim, Y. H. Byun, E. C. Chang, D. H. Cha, J. B. Ahn, S. and K. Min, 2022: Performance Evaluation and Future Projection of East Asian Climate using SSP Scenario-based CORDEX-East Asia Phase 2 Multi-RCM Simulation. Journal of Climate Change Research 13(3), 339-35 (in Korean with English abstract).
  13. Kogo, B. K., L. Kumar, and R. Koech, 2021: Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability 23(1), 23-43. https://doi.org/10.1007/s10668-020-00589-1
  14. Kotir, J. H. 2011: Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environment, Development and Sustainability 13(3), 587-605. https://doi.org/10.1007/s10668-010-9278-0
  15. NIMS (National Institute of Meteorological Science), 2022: South Korea Detailed Climate Change Outlook Report (Revised Edition), Korea, Jeju, p1-77 (available at http://www.climate.go.kr/).
  16. RDA (Rural Development Administration), 2021: Technology Guide on Downscaling Data Production for Agricultural Applications using SSP Scenarios. 49p, Wanju, Jeonbuk, Korea.
  17. Seferian, R. 2019: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1395
  18. Schupfner, M., K.-H. Wieners, F. Wachsmann, C. Steger, M. Bittner, J. Jungclaus, B. Fruh, K. Pankatz, M. Giorgetta, C. Reick, S. Legutke, M. Esch, V. Gayler, H. Haak, P. de Vrese, T. Raddatz, T. Mauritsen, J.-S. von Storch, J. Behrens, V. Brovkin, M. Claussen, T. Crueger, I. Fast, S. Fiedler, S. Hagemann, C. Hohenegger, T. Jahns, S. Kloster, S. Kinne, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U. Mikolajewicz, K. Modali, W. Muller, J. Nabel, D. Notz, K. Peters, R. Pincus, H. Pohlmann, J. Pongratz, S. Rast, H. Schmidt, R. Schnur, U. Schulzweida, K. Six, B. Stevens, A. Voigt, and E. Roeckner, 2020: CMIP6 CMIP DKRZ MPI-ESM1-2-HR amip - RCM-forcing data. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/RCM_CMIP6_AMIP-HR
  19. Tang, Y., S. Rumbold, R. Ellis, D. Kelley, J. Mulcahy, A. Sellar, J. Walton, and C. Jones, 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6113
  20. Voldoire, A. 2019: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1384
  21. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019a: INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP. https://doi.org/10.22033/ESGF/CMIP6.12321
  22. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019b: INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP. https://doi.org/10.22033/ESGF/CMIP6.12322
  23. WHO, 2019: Food safety, climate change and the role of WHO. from https://www.who.int/publications/i/item/food-safety-climate-change-and-the-role-of-who. (Accessed 12 February 2022).
  24. Wieners, K.-H., M. Giorgetta, J. Jungclaus, C. Reick, M. Esch, M. Bittner, V. Gayler, H. Haak, P. de Vrese, T. Raddatz, T. Mauritsen, J.-S. von Storch, J. Behrens, V. Brovkin, M. Claussen, T. Crueger, I. Fast, S. Fiedler, S. Hagemann, C. Hohenegger, T. Jahns, S. Kloster, S. Kinne, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U. Mikolajewicz, K. Modali, W. Muller, J. Nabel, D. Notz, K. Peters-von Gehlen, R. Pincus, H. Pohlmann, J. Pongratz, S. Rast, H. Schmidt, R. Schnur, U. Schulzweida, K. Six, B. Stevens, A. Voigt, and E. Roeckner, 2019: MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793
  25. Yukimoto, S., T. Koshiro, H. Kawai, N. Oshima, K. Yoshida, S. Urakawa, H. Tsujino, M. Deushi, T. Tanaka, M. Hosaka, H. Yoshimura, E. Shindo, R. Mizuta, M. Ishii, A. Obata, and Y. Adachi, 2019: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.638
  26. Ziehn, T., M. A. Chamberlain, R. M. Law, A. Lenton, R. W. Bodman, M. Dix, L. Stevens, Y.-P. Wang and J. Srbinovsky, 2020: The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science 70(1), 193-214. https://doi.org/10.1071/ES19035