DOI QR코드

DOI QR Code

Supply chain management and artificial intelligence improve the microstructure and economic evaluation of composite materials

  • Xiaopeng Yang (School of Economics and Management, WeiFang University) ;
  • Minghai Li (Xi'an University of Architecture & Technology)
  • Received : 2021.11.26
  • Accepted : 2024.03.21
  • Published : 2024.04.10

Abstract

In the current study, we aim to evaluate both microstructural characteristics and economic benefits of composite structures from supply chain utilizing AI-based method. In this regard, the various aspects of microstructure of composite materials along with the features of supply chain are discussed and quantified. In addition, the final economic aspects of the composite materials and are also presented. Based on available data, a designed artificial neural network is utilized for prediction of both microstructure and economical feature of the composite material. The results indicate that the supply chain could affect the microstructure of final composite materials which in turn make changes in the mechanical properties and durability of composite materials.

Keywords

Acknowledgement

This work was supported by Key Funding Project of Green Development Research Fund of Higher Education Ministry: Research on Intelligent Energy Conservation Strategy Based on Big Data (Educational Development 2016-07).

References

  1. Al-Furjan, M., Samimi-Sohrforozani, E., Habibi, M., won Jung, D. and Safarpour, H. (2021a), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152 https://doi.org/10.1016/j.compstruct.2020.113152.
  2. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021b), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990 https://doi.org/10.1016/j.compstruct.2020.112990.
  3. Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252, 112737 https://doi.org/10.1016/j.compstruct.2020.112737.
  4. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.w. and Tounsi, A. (2022), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38(5), 3725-3741 https://doi.org/10.1007/s00366-020-01200-x.
  5. Al-Furjan, M.S.H., hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021c), "On the vibrations of the imperfect sandwich higherorder disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150 https://doi.org/10.1016/j.compstruct.2020.113150.
  6. Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manufact. Processes, 47, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035.
  7. Amelirad, O. and Assempour, A. (2021), "Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates", Eng. Comput., 1-15 https://doi.org/10.1007/s00366-021-01346-2.
  8. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., https://doi.org/10.1007/s00366-021-01382-y.
  9. Asghar, S., Naeem Muhammad, N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete. 25(2), 133-144 https://doi.org/10.12989/cac.2020.25.2.133.
  10. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655 https://doi.org/10.12989/scs.2020.34.5.643.
  11. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249 https://doi.org/10.12989/anr.2021.11.3.239.
  12. Bourada, F., Bousahla Abdelmoumen, A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou Kouider, H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete. 25(6), 485-495. https://doi.org/10.12989/CAC.2020.25.6.485.
  13. Bousahla Abdelmoumen, A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNTRC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166 https://doi.org/10.12989/CAC.2020.25.2.155.
  14. Cai, S., Wang, Z., Wang, S., Perdikaris, P. and Karniadakis, G.E. (2021), "Physics-informed neural Networks for heat transfer problems", J. Heat Transfer, 143(6), https://doi.org/10.1115/1.4050542.
  15. Chen, C.-T. and Gu, G.X. (2019), "Machine learning for composite materials", MRS Commun., 9(2), 556-566 https://doi.org/10.1557/mrc.2019.32.
  16. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Methods Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961.
  17. Clyne, T.W. and Hull, D. (2019), An Introduction to Composite Materials, Cambridge university press
  18. Coronado Mondragon, A.E., Mastrocinque, E. and Hogg, P.J. (2017), "Technology selection in the absence of standardised materials and processes: a survey in the UK composite materials supply chain", Product. Planning Control, 28(2), 158-176 https://doi.org/10.1080/09537287.2016.1252070.
  19. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite opentype shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  20. Derogar, A. and Djavanroodi, F. (2011), "Artificial neural network modeling of forming limit diagram", Mater. Manufact. Processes, 26(11), 1415-1422 https://doi.org/10.1080/10426914.2010.544818.
  21. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473 https://doi.org/10.1007/s00542-019-04542-9.
  22. Elenchezhian, M.R.P., Vadlamudi, V., Raihan, R., Reifsnider, K. and Reifsnider, E. (2021), "Artificial intelligence in real-time diagnostics and prognostics of composite materials and its uncertainties-a review", Smart Mater. Struct., 30(8), 083001. https://doi.org/10.1088/1361-665X/ac099f.
  23. Fan, J., Huang, J., Ding, J. and Zhang, J. (2017), "Free vibration of functionally graded carbon nanotube-reinforced conical panels integrated with piezoelectric layers subjected to elastically restrained boundary conditions", Adv. Mech. Eng., 9(7), https://doi.org/10.1177/1687814017711811.
  24. Fattahi, A., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292 https://doi.org/10.12989/scs.2019.32.2.281.
  25. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct. Machines. 49(5), 738-762 https://doi.org/10.1080/15397734.2019.1705166.
  26. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control. 27(1-2), 101-118, https://doi.org/10.1177/1077546320923930.
  27. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(8), 1937-1951 https://doi.org/10.1177/14644207211024686.
  28. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Strut. Machines. 1-22 https://doi.org/10.1080/15397734.2020.1779086.
  29. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/SCS.2021.38.5.533.
  30. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2022), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 38(4), 3217-3235 https://doi.org/10.1007/s00366-021-01456-x.
  31. Huang, K., Guo, H., Qin, Z., Cao, S. and Chen, Y. (2020), "Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Aeros. Sci. Technol., 103, 105915. https://doi.org/10.1016/j.ast.2020.105915.
  32. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021a), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  33. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021b), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  34. Hueber, C., Horejsi, K. and Schledjewski, R. (2016), "Review of cost estimation: methods and models for aerospace composite manufacturing", Adv. Manufact. Polymer Compos. Sci., 2(1), 1-13 https://doi.org/10.1080/20550340.2016.1154642.
  35. Hutchinson, J. (1970), "Elastic-plastic behaviour of polycrystalline metals and composites", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 319(1537), 247-272. https://doi.org/10.1098/rspa.1970.0177.
  36. Jam, J.E. and Kiani, Y. (2015), "Buckling of pressurized functionally graded carbon nanotube reinforced conical shells", Compos. Struct., 125, 586-595. https://doi.org/10.1016/j.compstruct.2015.02.052.
  37. Javani, M., Kiani, Y. and Eslami, M. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin-Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  38. Jiao, J., Ghoreishi, S.-m., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magnetoelectro- elastic nanosystem", Eng. Comput., https://doi.org/10.1007/s00366-021-01391-x.
  39. Jimenez, G.A. and Jana, S.C. (2007), "Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing", Compos. Part A: Appl. Sci. Manufact., 38(3), 983-993. https://doi.org/10.1016/j.compositesa.2006.06.017.
  40. Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003), "Determination of the size of the representative volume element for random composites: statistical and numerical approach", Int. J. Solids Struct., 40(13-14), 3647-3679 https://doi.org/10.1016/S0020-7683(03)00143-4.
  41. Khalid, F.A., Beffort, O., Klotz, U.E., Keller, B.A. and Gasser, P. (2004), "Microstructure and interfacial characteristics of aluminium-diamond composite materials", Diamond Related Mater., 13(3), 393-400. https://doi.org/10.1016/j.diamond.2003.11.095.
  42. Khalili, S.M.R., Soroush, M., Davar, A. and Rahmani, O. (2011), "Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells", Compos. Struct., 93(5), 1363-1375 https://doi.org/10.1016/j.compstruct.2010.10.003.
  43. Li, H., Siqi, Z., Shi, X., Wu, H., Zhaoye, Q., Pengxu, L., Wang, X. and Zhongwei, G. (2022), "Thermal-vibration aging of fiberreinforced polymer cylindrical shells with polyurea coating: Theoretical and experimental studies", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2022.2032886.
  44. Lingamdinne, L.P., Amelirad, O., Koduru, J.R., Karri, R.R., Chang, Y.-Y., Dehghani, M.H. and Mubarak, N.M. (2023), "Functionalized bentonite for removal of Pb(II) and As(V) from surface water: Predicting capability and mechanism using artificial neural network", J. Water Process Eng., 51, 103386. https://doi.org/10.1016/j.jwpe.2022.103386.
  45. Ma, L., Liu, X. and Moradi, Z. (2021a), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25, https://doi.org/10.1007/s00366-020-01210-9.
  46. Ma, R., Karimzadeh, M., Ghabussi, A., Zandi, Y., Baharom, S., Selmi, A. and Maureira-Carsalade, N. (2021b), "Assessment of composite beam performance using GWO-ELM metaheuristic algorithm", Eng. Comput., https://doi.org/10.1007/s00366-021-01363-1.
  47. Matouk, H., Bousahla Abdelmoumen, A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  48. Meng, F., Olivetti, E.A., Zhao, Y., Chang, J.C., Pickering, S.J. and McKechnie, J. (2018), "Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options", ACS Sustain. Chemistry Eng., 6(8), 9854-9865. https://doi.org/10.1021/acssuschemeng.8b01026.
  49. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L.K. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite Microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  50. Mohammadimehr, M., Emdadi, M. and Rousta Navi, B. (2020), "Dynamic stability analysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory", J. Sandw. Struct. Mater., 22(4), 1199-1234 https://doi.org/10.1177/1099636218782770.
  51. Moradi, H., Atashi, P., Amelirad, O., Yang, J.-K., Chang, Y.-Y. and Kamranifard, T. (2022), "Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stober method", Adv, Nano Res., 12(4), 387-403. https://doi.org/10.12989/anr.2022.12.4.387.
  52. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  53. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868.
  54. Pagani, A., Azzara, R., Augello, R. and Carrera, E. (2021), "Stress states in highly flexible Thin-Walled Composite Structures by Unified Shell Model", AIAA Journal. 59(10), 4243-4256 https://doi.org/10.2514/1.J060024.
  55. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Archives Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.
  56. Ramakrishna, S. (1997), "Microstructural design of composite materials for crashworthy structural applications", Mater. Des., 18(3), 167-173. https://doi.org/10.1016/S0261-3069(97)00098-8.
  57. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
  58. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin- Wall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  59. Sarfraz, M.S., Hong, H. and Kim, S.S. (2021), "Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study", Compos. Struct., 266, 113864. https://doi.org/10.1016/j.compstruct.2021.113864.
  60. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  61. Sharma, A., Mukhopadhyay, T., Rangappa, S.M., Siengchin, S. and Kushvaha, V. (2022), "Advances in computational intelligence of polymer composite materials: Machine learning assisted modeling, analysis and design", Archives Comput. Methods Eng., 29(5), 3341-3385. https://doi.org/10.1007/s11831-021-09700-9.
  62. Shokrgozar, A., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell", Mech. Based Des. Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2020.1719509.
  63. Silva, M., Ferreira, F.N., Alves, N.M. and Paiva, M.C. (2020), "Biodegradable polymer nanocomposites for ligament/tendon tissue engineering", J. Nanobiotechnology, 18(1), 23. https://doi.org/10.1186/s12951-019-0556-1.
  64. Singh, A.K., Mahto, S. and Guha, S. (2021), "Analysis of plane wave reflection and transmission phenomenon at the interface of two distinct micro-mechanically modeled rotating initially stressed piezomagnetic fiber-reinforced half-spaces", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2021.2003490.
  65. Sobhani, E., Masoodi, A.R., Dimitri, R. and Tornabene, F. (2023), "Free vibration of porous graphene oxide powder nanocomposites assembled paraboloidal-cylindrical shells", Compos. Struct., 304, 116431. https://doi.org/10.1016/j.compstruct.2022.116431.
  66. Sultan, A.A.M., Mativenga, P.T. and Lou, E. (2018), "Managing Supply Chain Complexity: Foresight for Wind Turbine Composite Waste", Procedia CIRP. 69, 938-943. https://doi.org/10.1016/j.procir.2017.11.027.
  67. Van Vinh, P. and Tounsi, A. (2022), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
  68. Wang, C., Ren, X., Diao, Q., Pan, X., Su, W., Chang, L., Lin, B. and Yan, S. (2023), "Sound absorption performance of a triplehole structure in green ceramsite concrete for high-speedrailway sound barriers: Experiments and neural network modeling", Case Studies Construct. Mater., 18, e01980. https://doi.org/10.1016/j.cscm.2023.e01980.
  69. Yan, Y. (2022), "Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach", Geomech. Eng., 28(5), 477-491. https://doi.org/10.12989/GAE.2022.28.5.477.
  70. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  71. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117.
  72. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  73. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23 https://doi.org/10.1007/s00366-020-01242-1.