과제정보
본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.
참고문헌
- C. Lim, S. Ha, N. Ha, S. G. Jeong, and Y. S. Lee., Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., 34, 611-617 (2023).
- S. Ha, D. Kim, C. H. Kwak, and Y. S. Lee., Surface modification technology and research trends of separators for lithium-ion Batteries, Appl. Chem. Eng., 33, 343-351 (2022).
- E. V. Beletskii, M. A. Kamenskii, E. V. Alekseeva, A. I. Volkov, D. A. Lukyanov, D. V. Anishchenko, A. O. Radomtseu, A. A. Reveguk, O. V. Glumov, and O. V. Levin, One-step atmospheric plasma-assisted synthesis of FeOOH and FeOOH/ graphite high performance anode materials for lithium-ion batteries, Appl. Surf. Sci., 597, 153698 (2022).
- J. Cui, H. Zhang, Y. Liu, S. Li, W. He, J. Hu, and J. Sun, Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries, Electrochim. Acta, 334, 135619 (2020).
- Y. Ju, J. A. Tang, K. Zhu, Y. Meng, C. Wang, G. Chen, Y. Wei, and Y. Gao, SiOx/C composite from rice husks as an anode material for lithium-ion batteries, Electrochim. Acta, 191, 411-416 (2016). https://doi.org/10.1016/j.electacta.2016.01.095
- J. Dan, C. Jin, L. Wen, G. Xu, X. Li, F. Sun, L. Zhou, and Z. Yue, A double-layer-coated graphite anode material for high-rate lithium-ion batteries, Solid State Sci., 141, 107220 (2023).
- D. Kim, C. Lim, S. Kim, and Y. S. Lee, Fabrication and the electrochemical characteristics of petroleum residue-based anode materials, Appl. Chem. Eng., 33, 496-501 (2022).
- X. Yang, C. Zhan, X. Ren, C. Wang, L. Wei, Q. Yu, D. Xu, D. Nan, R. Lv, W. Shen, F. Kang, and Z. H. Huang, Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries, J. Solid State Chem., 303, 122500 (2021).
- Y. Cao, M. Su, T. Bi, Y. Zhou, X. Zhan, and Q. Lin, Three-dimensional graphitic hierarchical porous carbon-supported SnOx@ nitrogen-doped carbon composite as high-performance lithium ion battery anode material, J. Energy Storage, 76, 109783 (2024).
- G. Shen, B. Li, Y. Xu, X. Chen, S. Katiyar, L. Zhu, L. Xie, Q. Han, X. Qiu, X. Wu, and X. Cao, Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries, J. Colloid Interface Sci., 653, 1588-1599 (2024). https://doi.org/10.1016/j.jcis.2023.09.150
- J. H. Lin and C. Y. Chen, Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery, Surf. Coat. Technol., 436, 128270 (2022).
- S. Ha, S. G. Jeong, C. Lim, C. G. Min, and Y. S. Lee, Application of thermally fluorinated multi-wall carbon nanotubes as an additive to an Li4Ti5O12 lithium ion battery, Nanomaterials, 13, 995 (2023).
- K. Chen, F. Gu, J. Xiong, H. Yu, Y. Du, and Y. Song, NiO/nitrogen-oxygen co-doped carbon nanoflower composites based on covalent organic frameworks for lithium-ion battery anodes, J. Alloys Compd., 924, 166524 (2022).
- T. Rong, Y. Yuan, H. Yu, H. Zuo, and Q. Xue, Research on anthracite-derived graphite flakes prepared by molten salt electrolysis as anode materials for high-performance lithium-ion batteries, Fuel Process. Technol., 252, 107992 (2023).
- F. Zhao, M. Zhao, Y. Dong, L. Ma, Y. Zhang, S. Niu, and L. Wei, Facile preparation of micron-sized silicon-graphite carbon composite as anode material for high-performance lithium-ion batteries, Powder Technol., 404, 117455 (2022).
- Z. Ren, S. Liu, J. Chen, Y. Yu, Q. Shang, S. Fakudze, C. Liu, P. Zhou, and Q. Chu, One-step synthesis of interface-coupled Si@ SiOX @C from whole rice-husks for high-performance lithium storage, Electrochim. Acta, 402, 139556 (2022).
- N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 3, 1919 (2013).
- S. Ha, K. Hwang, D. Kim, S. Yoon, and Y. S. Lee, Multiple performance enhancements with one effect: Improving the electrochemical performance of SiOx coated with specific aromatic compounds, J. Ind. Eng. Chem., 117, 188-195 (2023). https://doi.org/10.1016/j.jiec.2022.10.003
- T. Rong, Y. Yuan, H. Yu, H. Zuo, and Q. Xue, Research on anthracite-derived graphite flakes prepared by molten salt electrolysis as anode materials for high- performance lithium-ion batteries, Fuel Process. Technol., 252, 107992 (2023).
- Z. Cheng, B. Tu, Y. Wu, and H. Huang, High-pressure and high-temperature synthesis of black phosphorus-graphite anode material for lithium-ion batteries, Electrochim. Acta, 473, 143510 (2024).
- D. Feng, Y. Li, X. Qin, L. Zheng, B. Guo, W. Dai, N. Song, L. Liu, Y. Xu, Z. Tang, and T. Gao, Biomass derived porous carbon anode materials for lithium-ion batteries with high electrochemical performance, Int. J. Electrochem. Sci., 19, 100488 (2024).
- J. Niu, Y. Liu, X. Wang, J. Liu, Z. Zhao, X. Liu, K. K. Ostrikov, Biomass-derived bifunctional cathode electrocatalyst and multiadaptive gel electrolyte for high-performance flexible Zn-Air batteries in wide temperature range, Small, 19, e2303727 (2023).
- S. Ha, S. G. Jeong, S. Myeong, C. Lim, and Y. S. Lee, High-performance CO2 adsorption of jellyfish-based activated carbon with many micropores and various heteroatoms, J. CO2 Util., 76, 102589 (2023).
- B. Wang, H. Liu, Y. Liu, Z. Sun, X. Chen, and A. Hein, Patterns of spread and adoption of millet agriculture along the eastern rim of the Tibetan Plateau: Archaeobotanical evidence from Houzidong, Southwest China (4200-4000 cal. BP), J. Archaeol. Sci., 35, 100448 (2023).
- C. Chen, Y. Huang, Z. Meng, J. Zhang, M. Lu, P. Liu, and T. Li, Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon, J. Colloid Interface Sci., 588, 657-669 (2021). https://doi.org/10.1016/j.jcis.2020.11.058
- R. Yan, K. Wang, X. Tian, X. Li, T. Yang, X. Xu, Y. He, S. Lei, and Y. Song, Heteroatoms in situ doped hierarchical porous hollow activated carbons for high performance supercapacitor, Carbon Lett., 30, 331-344 (2020).
- Y. Wang, D. Bai, X. Luo, and Y. Zhang, Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue, Chemosphere, 351, 141265 (2024).
- C. Lim, S. G. Jeong, S. Ha, N. Ha, S. Myeong, and Y. S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023). https://doi.org/10.1016/j.jiec.2023.04.008
- P. Rajkumar, V. Thirumal, G. Radhika, K. Yoo, and J. Kim, Facile preparation of bio waste derived porous carbon for high performance electrode material for energy storage applications: Li ion capacitor and Li ion batteries, Biomass Convers. Biorefin., Doi:10. 1007/s13399-024-05300-2.2024.01.05. https://doi.org/10.1007/s13399-024-05300-2.2024.01.05
- C. Lim, C. H. Kwak, Y. Ko, and Y. S. Lee, Mesophase pitch production from fluorine-pretreated FCC decant oil, Fuel, 328, 125244 (2022).
- J. H. Cho, J. H. Kim, Y. S. Lee, J. S. Im, and S. C. Kang, Preparation and characterization of pitch based coke with anisotropic microstructure derived from pyrolysis fuel oil, Appl. Chem. Eng., 32, 640-646 (2021).
- C. Lim, S. Ha, S. Myeong, N. Ha, C. G. Min, and Y. S. Lee, Production of needle cokes via mild condition co-pyrolysis of FCC-DO and PFPE, Fuel, 360, 130622 (2024).
- T. K. Whang, J. H. Kim, J. S. Im, and S. C. Kang, Effect of low temperature heat treatment on the physical and chemical properties of carbon anode materials and the performance of secondary batteries, Appl. Chem. Eng., 32, 83-90 (2021).
- J. U. Hwang, J. D. Lee, and J. S. Im, Electrochemical properties of needle coke through a simple carbon coating process for lithium ion battery, Appl. Chem. Eng., 31, 514-519 (2020).
- N. Ha, S. G. Jeong, C. Lim, S. Ha, C. G. Min, Y. Choi, and Y. S. Lee, Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023). https://doi.org/10.1007/s42823-023-00488-1
- S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., 133, 525-532 (2024). https://doi.org/10.1016/j.jiec.2023.12.029
- C. Lim, Y. Ko, C. H. Kwak, S. Kim, and Y. S. Lee, Mesophase pitch production aided by the thermal decomposition of polyvinylidene fluoride, Carbon Lett., 32, 1329-1335 (2022). https://doi.org/10.1007/s42823-022-00369-z
- M. J. A. Ahmad, A. Telfah, Q. M. Al-Bataineh, C. J. Tavares, and R. Hergenroder, Nanoparticles positioning effect on properties of (PS-PANI/NiNPs) nanocomposite films, Polym. Adv. Technol., 34, 110-119 (2023). https://doi.org/10.1002/pat.5870
- N. Ha, C. Lim, C. G. Min, S. Myeong, and Y. S. Lee, Improved discharge capacities for lithium ion batteries containing needle cokes doped with oxygen via ozonation, J. Mater. Sci.: Mater. Electron., 35, 252 (2024).
- V. Bernal, L. Giraldo, and J. C. Moreno-Pirajan, Physicochemical properties of activated carbon : Their effect on the absorption of pharmaceutical compounds and adsorbate-adsorbent interactions, C, 4, 62 (2018).
- G. I. Razdyakonova, O. Kokhanovskaya, V. A. Likholobov, Influence of environmental conditions on carbon black oxidation by reactive oxygen intermediates, Procedia Eng., 113, 43-50 (2015). https://doi.org/10.1016/j.proeng.2015.07.287