Acknowledgement
The authors thank the editor and referees for their helpful comments and suggestions that helped improve the paper's presentation.
References
- S. Altinkaya and S. Yalcin, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12(5)(2018), 1315-1319. https://doi.org/10.1007/s11785-018-0764-y
- A. Baricz (2010). Geometric Properties of Generalized Bessel Functions, In Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, vol. 1994, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12230-9.
- S. Cakmak, S. Yalcin and S. Altinkaya, An application of the distribution series for certain analytic function classes, Surv. Math. Appl., 15(2020), 225-331.
- N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hyper geometric functions, Fract. Cal. Appl. Anal., 5(3)(2002), 303-313.
- S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59(2)(2019), 301-314.
- S. Fukui, A Remark on a Class of Certain Analytic Functions, Proc. Japan Acad. Ser. A Math. Sci., 67(6)(1990), 191-192.
- A. M. Y. Lashin, A. O. Badghaish and A. Z Bajamal, The sufficient and necessary conditions for the Poisson distribution series to be in some subclasses of analytic functions, J. Funct. space 2022(2022), Art. ID 2419196, 6 pp. https://doi.org/10.1155/2022/2419196.
- E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12(1961), 885-888. https://doi.org/10.1090/S0002-9939-1961-0143950-1
- S. R. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2), 35(1)(2012), 179-194.
- G. Murugusundaramoorthy and T. Janani, An application of generalized Bessel functions on certain subclasses of analytic functions, Turk. J. Anal. Number Theory, 3(1)(2015), 1-6.
- G. Murugusundaramoorthy, K. Vijaya and M. Kasthuri, A note on subclasses of starlike and convex functions associated with Bessel functions, J. Nonlinear Funct. Anal., 2014(2014), 1-11.
- W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26(1)(2019), 11-17.
- S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., (2014), Art. ID 984135, 3 pp.
- S. Porwal, Mapping properties of generalized Bessel functions on some subclasses of univalent functions, Anal. Univ. Oradea Fasc. Mat., 20(2)(2013), 51-60.
- S. Porwal, S,. Altinkaya and S. Yal,cin, The Poisson distribution series of general subclasses of univalent functions, Acta Univ. Apulensis Math. Inform., 58(2019), 45-52.
- S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27(2016), 1021-1027. https://doi.org/10.1007/s13370-016-0398-z
- M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37(1936), 374-408, doi: 10.2307/1968451
- H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172(2)(1993), 574-581. https://doi.org/10.1006/jmaa.1993.1044
- R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47(2)(1982), 309-314. https://doi.org/10.4064/cm-47-2-309-314
- H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integral Transforms Spec. Funct., 18(2007), 511-520. https://doi.org/10.1080/10652460701391324