DOI QR코드

DOI QR Code

A Study on Two Subclasses of Analytic and Univalent Functions with Negative Coefficients Involving the Poisson Distribution Series

  • Abdul Moneim Yousof Lashin (Department of Mathematics, Faculty of Science, King Abdulaziz University, Department of Mathematics Faculty of Science, Mansoura University) ;
  • Abeer Omard Ahmad Badghaish (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Fayzah Awad Alshehri (Department of Mathematics, Faculty of Science, Bishha University)
  • Received : 2023.06.06
  • Accepted : 2023.11.03
  • Published : 2024.03.31

Abstract

This paper introduces two new subclasses of analytical functions with negative coefficients and derives coefficient estimates for these novel subclasses. Further, inclusion relations and necessary and sufficient conditions for the Poisson distribution series to belong to these subclasses are established.

Keywords

Acknowledgement

The authors thank the editor and referees for their helpful comments and suggestions that helped improve the paper's presentation.

References

  1. S. Altinkaya and S. Yalcin, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12(5)(2018), 1315-1319. https://doi.org/10.1007/s11785-018-0764-y
  2. A. Baricz (2010). Geometric Properties of Generalized Bessel Functions, In Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, vol. 1994, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12230-9.
  3. S. Cakmak, S. Yalcin and S. Altinkaya, An application of the distribution series for certain analytic function classes, Surv. Math. Appl., 15(2020), 225-331.
  4. N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hyper geometric functions, Fract. Cal. Appl. Anal., 5(3)(2002), 303-313.
  5. S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59(2)(2019), 301-314.
  6. S. Fukui, A Remark on a Class of Certain Analytic Functions, Proc. Japan Acad. Ser. A Math. Sci., 67(6)(1990), 191-192.
  7. A. M. Y. Lashin, A. O. Badghaish and A. Z Bajamal, The sufficient and necessary conditions for the Poisson distribution series to be in some subclasses of analytic functions, J. Funct. space 2022(2022), Art. ID 2419196, 6 pp. https://doi.org/10.1155/2022/2419196.
  8. E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12(1961), 885-888. https://doi.org/10.1090/S0002-9939-1961-0143950-1
  9. S. R. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2), 35(1)(2012), 179-194.
  10. G. Murugusundaramoorthy and T. Janani, An application of generalized Bessel functions on certain subclasses of analytic functions, Turk. J. Anal. Number Theory, 3(1)(2015), 1-6.
  11. G. Murugusundaramoorthy, K. Vijaya and M. Kasthuri, A note on subclasses of starlike and convex functions associated with Bessel functions, J. Nonlinear Funct. Anal., 2014(2014), 1-11.
  12. W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26(1)(2019), 11-17.
  13. S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., (2014), Art. ID 984135, 3 pp.
  14. S. Porwal, Mapping properties of generalized Bessel functions on some subclasses of univalent functions, Anal. Univ. Oradea Fasc. Mat., 20(2)(2013), 51-60.
  15. S. Porwal, S,. Altinkaya and S. Yal,cin, The Poisson distribution series of general subclasses of univalent functions, Acta Univ. Apulensis Math. Inform., 58(2019), 45-52.
  16. S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27(2016), 1021-1027. https://doi.org/10.1007/s13370-016-0398-z
  17. M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37(1936), 374-408, doi: 10.2307/1968451
  18. H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172(2)(1993), 574-581. https://doi.org/10.1006/jmaa.1993.1044
  19. R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47(2)(1982), 309-314. https://doi.org/10.4064/cm-47-2-309-314
  20. H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integral Transforms Spec. Funct., 18(2007), 511-520. https://doi.org/10.1080/10652460701391324