DOI QR코드

DOI QR Code

CERTAIN SUBCLASS OF STRONGLY MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

  • Received : 2023.10.03
  • Accepted : 2024.01.30
  • Published : 2024.03.30

Abstract

The purpose of this paper is to introduce a new subclass of strongly meromorphic close-to-convex functions by subordinating to generalized Janowski function. We investigate several properties for this class such as coefficient estimates, inclusion relationship, distortion property, argument property and radius of meromorphic convexity. Various earlier known results follow as particular cases.

Keywords

References

  1. V. V. Anh and P. D. Tuan, On β-convexity of certain starlike functions, Rev. Roum. Math. Pures et Appl. Vol. 25, 1413-1424, 1979. 
  2. M. K. Aouf, On a class of p-valent starlike functions of order α, Int. J. Math. Math. Sci. 10 (4) (1987), 733-744. https://doi.org/10.1155/S0161171287000838 
  3. J. Clunie, On meromorphic schlicht functions, J. Lond. Math. Soc. 34 (1959), 215-216. https://doi.org/10.1112/jlms/s1-34.2.215 
  4. C.Y. Gao, S.Q. Zhou, On a class of analytic functions related to the starlike functions, Kyungpook Math. J. 45 (2005), 123-130. https://koreascience.kr/article/JAKO200510102455991.pdf  10102455991.pdf
  5. G. M. Goluzin, Some estimates for coefficients of univalent functions, Matematicheskii Sbornik 3 (45) (1938), 321-330. 
  6. W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math. 28 (1973), 297-326. https://doi.org/10.4064/AP-28-3-297-326 
  7. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. https://doi.org/10.1307/MMJ/1028988895 
  8. J. Kowalczyk and E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Letters 23 (2010), 1147-1151. https://doi.org/10.1016/j.aml.2010.03.004 
  9. S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Vol. 225, Marcel Dekker, New York, USA, 2000. https://doi.org/10.1201/9781482289817 
  10. Y. Polatoglu, M. Bolkal, A. Sen and E. Yavuz, A study on the generalization of Janowski function in the unit disc, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 22 (2006), 27-31. https://real.mtak.hu/186869/1/amapn22_04.pdf 
  11. C. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235. https://doi.org/10.2140/PJM.1963.13.221 
  12. J. K. Prajapat, A new subclass of close-to-convex functions, Surveys in Math. and its Appl. 11 (2016), 11-19. https://www.utgjiu.ro/math/sma/v11/p11_02.pdf 
  13. R. K. Raina, P. Sharma and J. Sokol, A class of strongly close-to-convex functions, Bol. Soc. Paran. Mat. 38 (6) (2020), 9-24. https://doi.org/10.5269/bspm.v38i6.38464 
  14. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. 48 (2) (1943), 48-825. https://doi.org/10.1112/plms/s2-48.1.48 
  15. Y. J. Sim and O. S. Kown, A subclass of meromorphic close-to-convex functions of Janowski's type, Int. J. Math. Math. Sci. Vol. 2012, Article Id. 682162, 12 pages. https://doi.org/10.1155/2012/682162 
  16. A. Soni and S. Kant, A new subclass of meromorphic close-to-convex functions, J. Complex Anal. Vol. 2013, Article Id. 629394, 5 pages. https://doi.org/10.1155/2013/629394 
  17. Z. G. Wang, Y. Sun and N. Xu, Some properties of certain meromorphic close-to-convex functions, Appl. Math. Letters 25 (3) (2012), 454-460. https://doi.org/10.1016/j.aml.2011.09.035