DOI QR코드

DOI QR Code

VC-DIMENSION AND DISTANCE CHAINS IN 𝔽dq

  • ;
  • Ruben Ascoli (Department of Mathematics, Georgia Institute of Technology) ;
  • Livia Betti (Department of Mathematics, University of Rochester) ;
  • Justin Cheigh (Department of Mathematics, Williams College) ;
  • Alex Iosevich (Department of Mathematics, University of Rochester) ;
  • Ryan Jeong (Department of Mathematics, University of Cambridge) ;
  • Xuyan Liu (Department of Mathematics, Brown University) ;
  • Brian McDonald (Department of Mathematics, University of Georgia) ;
  • Wyatt Milgrim (Department of Mathematics, University of California Los Angeles) ;
  • Steven J. Miller (Department of Mathematics, Williams College) ;
  • Francisco Romero Acosta (Department of Mathematics, Virginia Polytechnic Institute and State University) ;
  • Santiago Velazquez Iannuzzelli (Department of Mathematics, Northwestern University)
  • 투고 : 2022.11.26
  • 심사 : 2023.06.22
  • 발행 : 2024.03.30

초록

Given a domain X and a collection H of functions h : X → {0, 1}, the Vapnik-Chervonenkis (VC) dimension of H measures its complexity in an appropriate sense. In particular, the fundamental theorem of statistical learning says that a hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions ℋ'2t(E) : 𝔽2q → {0, 1}, corresponding to indicator functions of circles centered at points in a subset E ⊆ 𝔽2q. They showed that when |E| is large enough, the VC-dimension of ℋ'2t(E) is the same as in the case that E = 𝔽2q. We study a related hypothesis class, ℋdt(E), corresponding to intersections of spheres in 𝔽dq, and ask how large E ⊆ 𝔽dq needs to be to ensure the maximum possible VC-dimension. We resolve this problem in all dimensions, proving that whenever |E| ≥ Cdqd-1/(d-1) for d ≥ 3, the VC-dimension of ℋdt(E) is as large as possible. We get a slightly stronger result if d = 3: this result holds as long as |E| ≥ C3q7/3. Furthermore, when d = 2 the result holds when |E| ≥ C2q7/4.

키워드

참고문헌

  1. M. Bennett, J. Chapman, D. Covert, D. Hart, A. Iosevich, J. Pakianathan, Long paths in the distance graph over large subsets of vector spaces over finite fields, Korean Math. Soc. 53 (1) (2016), 115-126. https://doi.org/10.4134/JKMS.2016.53.1.115
  2. M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, M. Rudnev, Group actions and geometric combinatorics in 𝔽dq, Forum Math. 29 (1) (2017), 91-110. https://doi.org/10.1515/forum-2015-0251
  3. D. Fitzpatrick, A. Iosevich, B. McDonald, E. Wyman, The VC-dimension and point configurations in 𝔽2q, Discrete Comput. Geom. (2023). https://doi.org/10.1007/s00454-023-00570-5
  4. D. Hart, A. Iosevich, D. Koh, S. Senger, I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, Recent advances in harmonic analysis and applications (2013), 139-160. https://doi.org/10.1007/978-1-4614-4565-4_14
  5. A. Iosevich, G. Jardine, B. McDonald, Cycles of arbitrary length in distance graphs on 𝔽dq, Tr. Mat. Inst. Steklova 314 (1) (2021) 27-43. https://doi.org/10.1134/S0081543821040027
  6. A. Iosevich, B. McDonald, M. Sun, Dot products in 𝔽3q and the Vapnik-Chervonenkis dimension, Discrete Math. 346 (1) (2023), Paper No. 113096. https://doi.org/10.1016/j.disc.2022.113096
  7. A. Iosevich, H. Parshall, Embedding distance graphs in finite field vector spaces, J. Korean Math. Soc. 56 (6) (2019), 1515-1528. https://doi.org/10.4134/JKMS.j180776
  8. A. Iosevich, M. Rudnev, Erdos distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc 359 (12) (2007), 6127-6142. https://doi.org/10.48550/arXiv.math/0509005
  9. M. Kearns, U. Vazirani, An introduction to computational learning theory, MIT press, 1994. https://doi.org/10.7551/mitpress/3897.001.0001
  10. H. Minkowski, Grundlagen fur eine Theorie quadratischen Formen mit ganzahligen Koeffizienten, Gesammelte Abhandlungen (1911), 3-145. https://doi.org/10.1007/978-3-540-34720-0_18
  11. S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge university press, 2014. https://doi.org/10.1017/CBO9781107298019