Acknowledgement
Donghoon Jang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2021R1C1C1004158).
References
- M. F. Atiyah and R. H. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28. https://doi.org/10.1016/0040-9383(84)90021-1
- A. Darby, Torus manifolds in equivariant complex bordism, Topology Appl. 189 (2015), 31-64. https://doi.org/10.1016/j.topol.2015.03.014
- L. Godinho and S. Sabatini, New tools for classifying Hamiltonian circle actions with isolated fixed points, Found. Comput. Math. 14 (2014), no. 4, 791-860. https://doi.org/10.1007/s10208-014-9204-1
- A. Hattori and H. Taniguchi, Smooth S1-action and bordism, J. Math. Soc. Japan 24 (1972), 701-731. https://doi.org/10.2969/jmsj/02440701
- D. Jang, Symplectic periodic flows with exactly three equilibrium points, Ergodic Theory Dynam. Systems 34 (2014), no. 6, 1930-1963. https://doi.org/10.1017/etds.2014.56
- D. Jang, Circle actions on almost complex manifolds with isolated fixed points, J. Geom. Phys. 119 (2017), 187-192. https://doi.org/10.1016/j.geomphys.2017.05.004
- D. Jang, Circle actions on almost complex manifolds with 4 fixed points, Math. Z. 294 (2020), no. 1-2, 287-319. https://doi.org/10.1007/s00209-019-02267-z
- D. Jang, Almost complex torus manifolds-graphs, Hirzebruch genera, and problem of Petrie type, arXiv:2201.00352, 2022.
- D. Jang, Circle actions on four dimensional almost complex manifolds with discrete fixed point sets, Int. Math. Res. Notices (2023), rnad285. https://doi.org/10.1093/imrn/rnad285
- D. Jang, Almost complex torus manifolds - graphs and Hirzebruch genera, Int. Math. Res. Notices 2023 (2023), no. 17, 14594-14609. https://doi.org/10.1093/imrn/rnac237
- D. Jang and S. Tolman, Hamiltonian circle actions on eight-dimensional manifolds with minimal fixed sets, Transform. Groups 22 (2017), no. 2, 353-359. https://doi.org/10.1007/s00031-016-9370-0
- S. Kobayashi, Fixed points of isometries, Nagoya Math. J. 13 (1958), 63-68. https://projecteuclid.org/euclid.nmj/1118800030 https://doi.org/10.1017/S0027763000023497
- C. Kosniowski, Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc. 2 (1970), 43-48. https://doi.org/10.1112/blms/2.1.43
- C. Kosniowski, Holomorphic vector fields with simple isolated zeros, Math. Ann. 208 (1974), 171-173. https://doi.org/10.1007/BF01432385
- C. Kosniowski and M. Yahia, Unitary bordism of circle actions, Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 1, 97-105. https://doi.org/10.1017/S001309150002811X
- H. Li, Hamiltonian circle actions with almost minimal isolated fixed points, J. Geom. Phys. 163 (2021), Paper No. 104141, 12 pp. https://doi.org/10.1016/j.geomphys.2021.104141
- H. Li, Hamiltonian circle actions with minimal isolated fixed points, Math. Z. 304 (2023), no. 2, Paper No. 33, 22 pp. https://doi.org/10.1007/s00209-023-03288-5
- M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. (2) 51 (1999), no. 2, 237-265. https://doi.org/10.2748/tmj/1178224815