DOI QR코드

DOI QR Code

FOURIER DECAY OF MORAN MEASURE WITH QUASI PERIODIC SEQUENCE

  • Zong-Sheng Liu (College of Mathematics and Statistics Hengyang Normal University)
  • Received : 2023.03.04
  • Accepted : 2023.09.05
  • Published : 2024.03.31

Abstract

In this paper, we introduce a class of Moran measures generated by quasi periodic sequences, and consider power decay of the Fourier transforms of this kind of measures.

Keywords

Acknowledgement

The research is supported in part by the Hunan Provincial Department of Education (22B0710) and Hengyang Normal University (2020QD19).

References

  1. N. Alon and J. H. Spencer, The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992.
  2. L.-X. An, X. Fu, and C.-K. Lai, On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem, Adv. Math. 349 (2019), 84-124. https://doi.org/10.1016/j.aim.2019.04.014
  3. L.-X. An and X.-G. He, A class of spectral Moran measures, J. Funct. Anal. 266 (2014), no. 1, 343-354. https://doi.org/10.1016/j.jfa.2013.08.031
  4. J. Bremont, Self-similar measures and the Rajchman property, Ann. H. Lebesgue 4 (2021), 973-1004. https://doi.org/10.5802/ahl.94
  5. R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), no. 2, 196-236. https://doi.org/10.1016/0001-8708(92)90064-R
  6. X.-R. Dai, D.-J. Feng, and Y. Wang, Refinable functions with non-integer dilations, J. Funct. Anal. 250 (2007), no. 1, 1-20. https://doi.org/10.1016/j.jfa.2007.02.005
  7. X.-R. Dai and Q. Sun, Spectral measures with arbitrary Hausdorff dimensions, J. Funct. Anal. 268 (2015), no. 8, 2464-2477. https://doi.org/10.1016/j.jfa.2015.01.005
  8. H. Davenport, P. Erd˝os, and W. J. LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311-314. http://projecteuclid.org/euclid.mmj/1028998917 1028998917
  9. D. E. Dutkay and C.-K. Lai, Spectral measures generated by arbitrary and random convolutions, J. Math. Pures Appl. (9) 107 (2017), no. 2, 183-204. https://doi.org/10.1016/j.matpur.2016.06.003
  10. P. Erdos, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-976. https://doi.org/10.2307/2371641
  11. P. Erdos, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940), 180-186. https://doi.org/10.2307/2371446
  12. D.-J. Feng, Z. Y. Wen, and J. Wu, Some dimensional results for homogeneous Moran sets, Sci. China Ser. A 40 (1997), no. 5, 475-482. https://doi.org/10.1007/BF02896955
  13. L. He and X.-G. He, On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal. 272 (2017), no. 5, 1980-2004. https://doi.org/10.1016/j.jfa.2016.09.021
  14. S. Hua and W. X. Li, Packing dimension of generalized Moran sets, Progr. Natur. Sci. (English Ed.) 6 (1996), no. 2, 148-152.
  15. S. Hua, H. Rao, Z. Wen, and J. Wu, On the structures and dimensions of Moran sets, Sci. China Ser. A 43 (2000), no. 8, 836-852. https://doi.org/10.1007/BF02884183
  16. J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. https://doi.org/10.1512/iumj.1981.30.30055
  17. B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48-88. https://doi.org/10.2307/1989728
  18. J.-P. Kahane, Sur la distribution de certaines series aleatoires, in Colloque de Theorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), 119-122, Supplement au Bull. Soc. Math. France, Tome 99, Soc. Math. France, Paris, 1971. https://doi.org/10.24033/msmf.42
  19. J. Li and T. Sahlsten, Fourier transform of self-affine measures, Adv. Math. 374 (2020), 107349, 35 pp. https://doi.org/10.1016/j.aim.2020.107349
  20. Z. S. Liu, X. H. Dong, and P. F. Zhang, A class of spectral Moran measures on ℝ, Fractals 28 (2020), no. 1, 2050015.
  21. Z.-Y. Lu, X.-H. Dong, and Z.-S. Liu, Spectrality of Sierpinski-type self-affine measures, J. Funct. Anal. 282 (2022), no. 3, Paper No. 109310, 31 pp. https://doi.org/10.1016/j.jfa.2021.109310
  22. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15-23. https://doi.org/10.1017/s0305004100022684
  23. R. Salem, Sets of uniqueness and sets of multiplicity, Trans. Amer. Math. Soc. 54 (1943), 218-228. https://doi.org/10.2307/1990330
  24. B. Solomyak, Fourier decay for self-similar measures, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3277-3291. https://doi.org/10.1090/proc/15515
  25. P. Varju and H. Yu, Fourier decay of self-similar measures and self-similar sets of uniqueness, Anal. PDE 15 (2022), no. 3, 843-858. https://doi.org/10.2140/apde.2022.15.843