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FOURIER DECAY OF MORAN MEASURE WITH

QUASI PERIODIC SEQUENCE

Zong-Sheng Liu

Abstract. In this paper, we introduce a class of Moran measures gener-

ated by quasi periodic sequences, and consider power decay of the Fourier
transforms of this kind of measures.

1. Introduction

Let µ be a finite positive Borel measure on R, its Fourier transform is defined
by

µ̂(ξ) =

∫
R
e2πiξxdµ(x).

The measure µ is called a Rajchman measure if lim|ξ|→∞ µ̂(ξ) = 0. The
Riemann-Lebesgue Lemma tells us that µ is Rajchman if it is absolutely con-
tinuous. It is difficulty to determine whether or not µ is a Rajchman measure
if it is singular. Further information about the rate of decay µ̂(ξ) is needed
for many applications. For example, Davenport, Erdős and LeVeque in [8] es-
tablished a method finding normal numbers by using the fast rate of decay for
µ̂(ξ). Especially, we are interested in the power Fourier decay of µ̂(ξ).

Definition 1.1. For α > 0, let

D(α)=
{
µ : µ is a finite positive measure on R with |µ̂(ξ)|=O( 1

|ξ|α ), |ξ| → ∞
}

and denote D =
⋃

α>0 D(α). We say that µ has power Fourier decay if µ ∈ D.

Fractal measure is a hot research field and self-similar measure is an impor-
tant kind of fractal measures, which were originated from Hutchinson [16].

Definition 1.2. Let {fi : fi(x) = ri(x + di), ri ∈ (0, 1), di ∈ R, 1 ≤ i ≤ m}
be an iterated function system (IFS), there exists a unique Borel probability
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measure µ supported on T ⊂ R such that

T =

m⋃
i=1

fi(T ), µ =

m∑
i=1

pi(µ ◦ f−1
i ),

where {pi}mi=1 is a probability weights, that is, pi > 0 and
∑m

i=1 pi = 1. µ is
called a self-similar measure and T a self-similar set.

There are a lot of papers devoted to the Fourier decay for self-similar mea-
sures. For the homogeneous case, that is, all contraction ratios are equal. The
best-known result is the Fourier decay for classical Bernoulli convolutions µr,
which is generated by the IFS {rx, rx + 1} with r ∈ (0, 1) and probabilities
{ 1
2 ,

1
2}. Erdős [10,11], Salem [23], Kahane [18] and many mathematicians have

done pioneering work on this problem. Whereas very few specific r are known,
for which µr has power Fourier decay, found by Dai, Feng and Wang [6]. The
non-homogeneous case is difficult, since contraction ratios are different and the
self-similar measure is not a convolutions. Li and Sahlsten [19], Brémont [4],
Varjú and Yu [25], respectively, studied the attenuation of Fourier transform
of non-homogeneous self-similar measures under different conditions. Recently,
Solomyak [24] showed that after removing a zero Hausdorff dimension excep-
tional set of parameters, all self-similar measures on the line have power decay
of the Fourier transforms.

More generally, Moran measure is supported on a Moran set, which is a
generalization of self-similar set and can be generated by Moran IFS.

Definition 1.3. For k,mk ∈ Z+, let Rk = (r
(k)
1 , . . . , r

(k)
mk) ∈ (0, 1)mk be a

contraction vector, and let

0 ∈ Dk =
{
d
(k)
1 , . . . , d(k)mk

}
⊂ R

be a finite digit set. We call the function system{
f
(k)
ik

: f
(k)
ik

(x) = r
(k)
ik

(x+ d
(k)
ik

), 1 ≤ ik ≤ mk, k ≥ 1
}

a Moran IFS.

Let Pk = {p(k)1 , . . . , p
(k)
mk} be a probability weights with respect to Dk, we

define

µk =
∑

1≤i1≤m1,...,1≤ik≤mk

p
(1)
i1

· · · p(k)ik
(δ0 ◦ (f (1)

i1
◦ · · · ◦ f (k)

ik
)−1),(1.1)

where δ0 is the Dirac measure at 0. For the completeness, we introduce the
following theorem without proof. One can refer the proof in [17].

Theorem 1.4. Suppose that µk is given by (1.1) and

sup
{
x : x = r

(k)
ik

d
(k)
ik

, d
(k)
ik

∈ Dk, 1 ≤ ik ≤ mk, k ≥ 1
}
< ∞.



FOURIER DECAY OF MORAN MEASURE 383

Then µk converges weakly to a Borel probability measure µ = µ{Rk},{Dk},{Pk}
with compact support

T ({Rk}, {Dk}) =

{
x : x =

∞∑
k=1

r
(1)
i1

r
(2)
i2

· · · r(k)ik
d
(k)
ik

, d
(k)
ik

∈ Dk, 1 ≤ ik ≤ mk

}
.

The measure µ in Theorem 1.4 is called a Moran measure generated by
a sequence of triples {(Rk, Dk, Pk)}∞k=1. Moran measures are very important
fractal measures. They generalize the self-similar measures and attract much
attention of a large number of researchers. There are a lot of researches on
the fractal properties of Moran measures and Moran sets [5, 6, 12, 14, 15, 22].
Recently, the study of spectrality of Moran measures is blooming in the fractal
community [2,3,7,9,13,20,21]. As the study progressed, researchers found that
the attenuation of Fourier transforms plays a important role in determining the
spectral properties of Moran measures. Motivated by these findings, we are
intend to generalize the power decay of Fourier transform to Moran measures.
In this paper, we consider a special class of Moran measures:

Definition 1.5. Let mk ≡ m ∈ Z+, Rk ≡ R = (r1, . . . , rm) ∈ (0, 1)m. If there
are finite distinct tuples (Dk, Pk) and there exist a sequence {kj}∞j=1 and l ∈ Z+

such that kj+1− kj = l (or 1 ≤ kj+1− kj ≤ l) and (Dkj , Pkj ) = (Dkj′ , Pkj′ ) for

j ̸= j′, we call {(Dk, Pk)}∞k=1 a quasi periodic sequence with period l (or less
than l), and say that the Moran measure µR,{Dk},{Pk} is generated by a quasi
periodic sequence with period l (or less than l).

The goal of this paper is to prove that the Moran measure generated by
quasi periodic sequence enjoys power Fourier decay. For this purpose, we firstly
investigate Moran measure with equal contraction components. In this case,
since the digit sets varies, Moran measure can not expressed as infinite Bernoulli
convolutions. We obtain the power Fourier decay by using the quasi-periodicity
of digit sets and improving the Erdős-Kahane method. The conclusion is as
follows.

Theorem 1.6. For m ≥ 1, there exists an exceptional set E ⊂ (0, 1)m of
zero Hausdorff dimension such that for all R = (r, r, . . . , r) ∈ (0, 1)m \ E, and
for any quasi periodic sequence {(Dk, Pk)}∞k=1, the associated Moran measure
µ = µR,{Dk},{Pk} ∈ D.

For the Moran measure with unequal contraction components and finite
quasi-period sequence, we iterate the Moran IFS several times to get a new one,
while preserving the measure. Inspired by the method in [24], we introduce the
theory of submartingale to calculate the probability of infinite words associated
with the exceptional contraction vectors. However, we directly calculate the
probability of infinite words instead of considering Z+ as the vertex set of a
directed graph. We get following results.
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Theorem 1.7. For m ≥ 1, there exists an exceptional set F ⊂ (0, 1)m of zero
Hausdorff dimension such that for all R = (r1, r2, . . . , rm) ∈ (0, 1)m \ F , and
for any quasi periodic sequence {(Dk, Pk)}∞k=1 with finite period, the associated
Moran measure µ = µR,{Dk},{Pk} ∈ D.

For the organization of the paper, we first introduce some notations in Sec-
tion 2, and give a corollary, which is needed in the proof of power Fourier
decay. We prove Theorem 1.6 and Theorem 1.7 in Section 3 and Section 4,
respectively.

2. Preliminaries

For the sake of convenience, we introduce some notations from symbolic
dynamical system. Denote Ik = {1, 2, . . . ,mk}, I0 = {ϑ} and

I0 × · · · × Ik = {I : I = i1 · · · in · · · ik, in ∈ In, 1 ≤ n ≤ k},

I∗ =

∞⋃
k=0

(I0 × · · · × Ik).

For any I = i1 · · · ik ∈ I0 × · · · × Ik, we write

fI = f
(1)
i1

◦ · · · ◦ f (k)
ik

, PI = p
(1)
i1

· · · p(k)ik
.

Then (1.1) can be written as

µk =
∑

I∈I0×···×Ik

PI(δ0 ◦ f−1
I ).(2.1)

Let mk ≡ m, Rk ≡ R and {(Dk, Pk)}∞k=1 be a quasi periodic sequence. Then

Ik ≡ I = {1, 2, . . . ,m}, I0 × · · · × Ik = Ik, I∗ =
⋃

Ik.

Further, (2.1) reduces to

µk =
∑
I∈Ik

PI(δ0 ◦ f−1
I ).(2.2)

Given a sequence {kj}∞j=1, for each j ≥ 1, we divide Ikj into j parts: Ikj =

Ik1 × Ik2−k1 × · · · × Ikj−kj−1 , it means that for each I ∈ Ikj , we depart it as

I =
︷ ︸︸ ︷
i1 · · · ik1 · · ·

︷ ︸︸ ︷
iks−1+1 · · · iks · · ·

︷ ︸︸ ︷
ikj−1+1 · · · ikj := I1 · · · Is · · · Ij ,

where Is = iks−1+1 · · · iks
∈ Iks−ks−1 , 1 ≤ s ≤ j, k0 = 0. For each Is, the

corresponding function

f
(s)
Is

(x) = f
(ks−1+1)
iks−1+1

◦ · · · ◦ f (ks)
iks

(x) = riks−1+1
· · · riks

(
x+ d

(ks)
iks

+ r−1
iks

d
(ks−1)
iks−1

+ · · ·+ (riks−1+2
· · · riks

)−1d
(ks−1+1)
iks−1+1

)
:= RIs(x+ d

(s)
Is

),



FOURIER DECAY OF MORAN MEASURE 385

where

RIs = riks−1+1
· · · riks

,

d
(s)
Is

= d
(ks)
iks

+ r−1
iks

d
(ks−1)
iks−1

+ · · ·+ (riks−1+2
· · · riks

)−1d
(ks−1+1)
iks−1+1

,

and the associated probability weight is P
(s)
Is

:= p
(ks−1)
iks−1

· · · p(ks)
iks

. In this way,

we obtain a new Moran IFS {f(s)Is
: Is ∈ Iks−ks−1 , s ≥ 1}. For each s ≥ 1, the

triple (R(s),D(s),P(s)) is define by
R(s) = (R1···1, . . . , RIs , . . . , Rm···m),

D(s) = {d(s)1···1, . . . , d
(s)
Is

, . . . , d
(s)
m···m},

P(s) = {P(s)
1···1, . . . ,P

(s)
Is

, . . . ,P
(s)
m···m}.

(2.3)

For Moran IFS {f(s)Is
: Is ∈ Iks−ks−1 , s ≥ 1}, we can also define measure

sequence

νj =
∑

I1∈Ik1 ,...,Ij∈Ikj−kj−1

PI1···Ij (δ0 ◦ (f
(1)
I1

◦ · · · ◦ f(j)Ij
)−1).

It is easy to see νj = µkj
. Hence, we have the following corollary.

Corollary 2.1. For any sequence {kj}∞j=1, {νj}∞j=1 converges weakly to µ =
µR,{Dk},{Pk}.

3. The case with equal contraction components

In this section, we consider the power Fourier decay of Moran measures
generated by a quasi periodic sequence with equal contraction components. In
order to prove Theorem 1.6, we need to prove following proposition.

Proposition 3.1. Let 1 < a < b < ∞, 0 < ϖ, ε, and l ∈ Z+. Then there exist
α > 0 and E ⊂ [b−1, a−1] such that dimH E < ϖ and for all R = (r, r, . . . , r)
with r ∈ [b−1, a−1] \ E, and for any quasi periodic sequence {(Dk, Pk)}∞k=1 with
period less than l and infk≥1{x : x ∈ Pk} ≥ ε, the associated Moran measure
µ = µR,{Dk},{Pk} ∈ D(α).

Proof. From (2.2), for k,K ≥ 1, we have

µ̂k(ξ) =
∑

i1···ik∈Ik

p
(1)
i1

· · · p(k)ik
e
2πi(rd

(1)
i1

+···+rkd
(k)
ik

)ξ
=

k∏
s=1

(
m∑
i=1

p
(s)
i e2πir

sd
(s)
i ξ

)
and

µ̂(ξ)=

∞∏
s=1

(
m∑
i=1

p
(s)
i e2πir

sd
(s)
i ξ

)
, |µ̂(r−Kξ)|≤

K∏
s=1

∣∣∣∣∣
m∑
i=1

p
(s)
i e2πir

s−Kd
(s)
i ξ

∣∣∣∣∣ .(3.1)

Note that {(Dk, Pk)}∞k=1 is a quasi periodic sequence with period less than l,
then there exists a sequence {kj} such that 1 ≤ kj+1− kj ≤ l and (Dkj , Pkj ) =
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(Dkj′ , Pkj′ ) for j ̸= j′. Without loss of generality, we can assume d
(k)
1 = 0 and

d
(kj)
2 = 1 for k ≥ 1, j ≥ 1. Then for j ≥ 1,∣∣∣ m∑

i=1

p
(kj)
i e2πir

kj−Kd
(kj)

i ξ
∣∣∣ ≤ m∑

i=3

p
(kj)
i + |p(kj)

1 + p
(kj)
2 e2πir

kj−Kξ|

≤ 1− 2πε∥rkj−Kξ∥2,

where ∥x∥ denotes the distance from x ∈ R to the nearest integer. Indeed, we

can assume that p
(kj)
1 > p

(kj)
2 , otherwise, write

|p(kj)
1 + p

(kj)
2 e2πir

kj−Kξ| = |p(kj)
1 e−2πirkj−Kξ + p

(kj)
2 |

and repeat the argument. Hence

|p(kj)
1 + p

(kj)
2 e2πir

kj−Kξ| ≤ p
(kj)
1 − p

(kj)
2 + p

(kj)
2 |1 + e−2πirkj−Kξ|

≤ p
(kj)
1 − p

(kj)
2 + 2p

(kj)
2 | cos(πrkj−Kξ)|

≤ p
(kj)
1 − p

(kj)
2 + 2p

(kj)
2 (1− π∥rkj−Kξ∥2)

≤ p
(kj)
1 + p

(kj)
2 − 2πε∥rkj−Kξ∥2.

Let

rkj−Kξ = cK−kj
+ ϵK−kj

, cK−kj
∈ N, ϵK−kj

∈ [−1

2
,
1

2
),

where ξ > 1, cK−kj
is the nearest integer to rkj−Kξ and |ϵK−kj

| = ∥rkj−Kξ∥.
Let ρ = 1

2(4+16bl)l+1l
, for K ≥ 1 and 3 ≤ n1 ∈ Z+, define Ẽ(n1,K) be the set{

r−1 ∈ [a, b] : there exists ξ ∈ [1, r−1) such that

Card ({kj : 1 ≤ kj ≤ K, |ϵK−kj
| ≥ ρ}) ≤ K

n1l

}
and Ẽ = lim supK→∞ Ẽ(n1,K). If r−1 /∈ Ẽ , then r−1 /∈ Ẽ(n1,K) for all K
sufficiently large. Fix such a K. From (3.1), it follows that for all ξ ∈ [1, r−1),

|µ̂(r−Kξ)| ≤
∏

kj≤K

(
1− 2πε∥rkj−Kξ∥2

)
≤ (1− 2περ2)

K
n1l .

Let ζ=r−Kξ, we get |µ̂(ζ)| ≤ (1−2περ2)
ln ζ+ln r
n1l ln b ≤ ζ

ln(1−2περ2)
n1l ln b (1−2περ2)

ln d−ln b
n1l ln b .

Since K is arbitrary, sufficiently large, this implies µ ∈ D(α), α = ln(1−2περ2)
−n1l ln b .

We now estimate dimH Ẽ . It is easy to check that for 1 ≤ kj ≤ kj+1 ≤ K,∣∣∣r−(kj+1−kj)−
cK−kj

cK−kj+1

∣∣∣= ∣∣∣r−(kj+1−kj)ϵK−kj+1
− ϵK−kj

cK−kj+1

∣∣∣(3.2)

≤
|r−(kj+1−kj)ϵK−kj+1 |+ |ϵK−kj |

aK−kj+1
≤ bl + 1

2aK−kj+1
.
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Note

1 ≤
cK−kj

cK−kj+1

=
rkj−Kξ − ϵK−kj

rkj+1−Kξ − ϵK−kj+1

≤
rkj−Kξ + 1

2

rkj+1−Kξ − 1
2

≤ 4rkj−kj+1 ≤ 4bl,

and r−1 > 1. Combining (3.2), we have∣∣∣r−1 −
( cK−kj

cK−kj+1

) 1
kj+1−kj

∣∣∣ ≤ ∣∣∣r−(kj+1−kj) −
cK−kj

cK−kj+1

∣∣∣ ≤ bl + 1

2aK−kj+1
.(3.3)

We will cover Ẽ(n1,K) by intervals of size ∼ a−K centered at
(

cK−k1

cK−k2

) 1
k2−k1

.

To this end, we need to estimate the number of possible pairs (cK−k2 , cK−k1)
associated to r−1 and ξ. Let JK be the largest j such that kj ≤ K. It is easy

to see that K
l ≤ JK ≤ K. Indeed, we will estimate the number of sequences

cK−kJK
, cK−kJK−1

, . . . , cK−k2 , cK−k1 .

Lemma 3.2. Let ρ = 1
2(4+16bl)l+1l

and A = (4 + 16bl)l+1l. The following

results hold for 0 ≤ j ≤ JK − 3.
(1) Given cK−kj+2

, cK−kj+1
, there are at most A possibilities for cK−kj

,

independent of r−1 ∈ [a, b] and ξ ∈ [1, r−1);
(2) Given cK−kj+2

, cK−kj+1
, if max{|ϵK−kj

|, |ϵK−kj+1
|, |ϵK−kj+2

|} < ρ, then

cK−kj
is uniquely determined, independent of r−1 ∈ [a, b] and ξ ∈ [1, r−1).

Proof. (3.2) and (3.3) tell us∣∣∣( cK−kj

cK−kj+1

) 1
kj+1−kj −

(cK−kj+1

cK−kj+2

) 1
kj+2−kj+1

∣∣∣
≤
∣∣∣( cK−kj

cK−kj+1

) 1
kj+1−kj − r−1

∣∣∣+ ∣∣∣r−1 −
(cK−kj+1

cK−kj+2

) 1
kj+2−kj+1

∣∣∣
≤

|r−(kj+1−kj)ϵK−kj+1
|+ |ϵK−kj

|
cK−kj+1

+
|r−(kj+2−kj+1)ϵK−kj+2

|+ |ϵK−kj+1
|

cK−kj+2

.

Denote

v =
(cK−kj+1)

1
kj+1−kj (|r−(kj+1−kj)ϵK−kj+1 |+ |ϵK−kj |)

cK−kj+1

+
(cK−kj+1

)
1

kj+1−kj (|r−(kj+2−kj+1)ϵK−kj+2
|+ |ϵK−kj+1

|)
cK−kj+2

and

u = (cK−kj+1)
( 1
kj+2−kj+1

+ 1
kj+1−kj

)
/(cK−kj+2)

1
kj+2−kj+1 ,

it follows 0 < (u− v)kj+1−kj ≤ cK−kj
≤ (u+ v)kj+1−kj . Since

(u+ v)kj+1−kj − (u− v)kj+1−kj

≤ 2lv(ukj+1−kj−1 + ukj+1−kj−2v + · · ·+ vkj+1−kj−1),
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and for any 1 ≤ s ≤ kj+1 − kj ,

ukj+1−kj−svs

=
[(cK−kj+1

cK−kj+2

) 1
kj+2−kj+1

(cK−kj+1)
1

kj+1−kj

]kj+1−kj−s

(cK−kj+1)
s

kj+1−kj

×
[ |r−(kj+1−kj)ϵK−kj+1 |+ |ϵK−kj |

cK−kj+1

+
|r−(kj+2−kj+1)ϵK−kj+2 |+ |ϵK−kj+1 |

cK−kj+2

]s
≤ 2s(4bl)l−s(1 + 4bl)s

cK−kj+1

(cK−kj+2
)s

max{|ϵK−kj
|, |ϵK−kj+1

|, |ϵK−kj+2
|}

< 2l(1 + 4bl)l+1 max{|ϵK−kj
|, |ϵK−kj+1

|, |ϵK−kj+2
|},

we obtain

(u+ v)kj+1−kj − (u− v)kj+1−kj

< (4 + 16bl)l+1lmax{|ϵK−kj |, |ϵK−kj+1 |, |ϵK−kj+2 |}.

The lemma follows easily as cK−kj
∈ N. □

Let us return to estimate the number of sequences

cK−kJK
, cK−kJK−1

, . . . , cK−k2 , cK−k1 .

Fix K ⊂ {1, 2, . . . , JK}, we consider those r−1 for which there exists ξ ∈ [1, r−1)
such that |ϵkj

| < ρ, j ∈ {1, 2, . . . , JK}\K. From Lemma 3.2, it follows that the
number of sequence cK−kJK

, cK−kJK−1
, . . . , cK−k2

, cK−k1
associated to those

r−1 is bounded above by (⌊b⌋ + 1)3A3 Card K, where ⌊b⌋ is the largest integer
less than b. Therefore, the number of sequences cK−kJK

, cK−kJK−1
, . . ., cK−k2

,

cK−k1 associated to Ẽ(n1,K) is at most

(⌊b⌋+ 1)3
⌊ K
n1l ⌋∑
s=1

Cs
JK

A3s < (⌊b⌋+ 1)3KC
⌊K/(n1l)⌋
JK

A3⌊K/(k1l)⌋

< (⌊b⌋+ 1)3KeA
3K

ln(n1l)
n1l ,

where the last inequality is deduced from Stirling’s formula. Thus, we obtain

that Ẽ(n1,K) may be covered by (⌊b⌋+1)3KleA
3K

ln(n1l)
n1l intervals of size ∼ a−K

since 1 ≤ k2 − k1 ≤ l. It follows

dimH Ẽ ≤ lim
K→∞

ln((⌊b⌋+ 1)3KleA
3K

ln(n1l)
n1l )

− ln a−K
=

A3 ln(n1l)

n1l ln a
.

Note that n1 ≥ 3 is arbitrary. We can take n1 such that A3 ln(n1l)
n1l ln a < ϖ. Hence

dimH Ẽ < ϖ. Let E = {r : r−1 ∈ Ẽ}. Since 1
x is bi-Lipschitz on [a, b], we get

dimH E = dimH Ẽ . It follows Proposition 3.1. □
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Proof of Theorem 1.6. Theorem 1.6 is a easy consequence of Proposition 3.1.
In fact, we can let G = {R : R = (r, r, . . . , r) ∈ (0, 1)m, r ∈ (0, 1)} and
(0, 1) = ∪∞

n=2[
1
n , 1 − 1

n+1 ]. For integers n, p, q ≥ 2, l ≥ 1, by Proposition

3.1, there exist αn,p,q,l and En,p,q,l such that dimH En,p,q,l < 1
p and for all

R = (r, . . . , r) ∈ (0, 1)m with r ∈ [ 1n , 1 −
1

n+1 ] \ En,p,q,l, for any quasi periodic

sequence {(Dk, Pk)}∞k=1 with period less than l and infk≥1{x : x ∈ Pk} ≥ 1
q ,

the associated Moran measure µ ∈ D(αn,p,q,l). Let

Ẽ =

∞⋃
l=1

∞⋃
n=2

∞⋂
p=2

∞⋃
q=2

En,p,q,l, E = {R : R = (r, r, . . . , r) ∈ (0, 1)m, r ∈ Ẽ}.

It is easy to see dimH Ẽ = 0. Note that Ẽ is a projection of E and the projection
is bi-Lipschitz. Then dimH E = 0 and for all R ∈ G \E and any quasi periodic
sequence {(Dk, Pk)}∞k=1, the associated Moran measure µ = µR,{Dk},{Pk} ∈
D. □

4. The case with unequal contraction components

In this section, we consider the power Fourier decay of Moran measure gen-
erated by a quasi periodic sequence with unequal contraction components. In
order to prove Theorem 1.7, we need following proposition.

Proposition 4.1. Let m ≥ 2, 1 < a < b < ∞, ε > 0, ϖ > 0 and l ∈ Z+.
Then there exist α > 0 and F ⊂ (0, 1)m such that dimH F < ϖ and for all
R = (r1, . . . , rm) ∈ (0, 1)m \ F with b−1 ≤ min1≤i≤m ri < max1≤i≤m ri ≤ a−1,
and for any quasi periodic sequence {(Dk, Pk)}∞k=1 with period l and infk≥1{x :
x ∈ Pk} ≥ ε, the associated Moran measure µ = µR,{Dk},{Pk} ∈ D(α).

Proof. Since {(Dk, Pk)}∞k=1 is a quasi periodic sequence with period l, there
exists a sequence {kj} such that kj+1−kj = l and (Dkj

, Pkj
) = (Dkj′ , Pkj′ ) for

j ̸= j′. We can choose a subsequence of {kj}, which still denoted by {kj} and
satisfies kj+1 − kj = nl, n ∈ Z+. Further, we can choose n such that

nl ≥ k1, anlϖ > m̃ := Cm−1
nl+m−1,

where m̃ = Cm−1
nl+m−1 is the number of ways to write nl as a sum of m non-

negative integers. From Corollary 2.1, we can define measure sequence

νj =
∑

I1∈Ik1 ,...,Ij∈Ikj−kj−1

PI1···Ij (δ0 ◦ (f
(1)
I1

◦ · · · ◦ f(j)Ij
)−1)

=
∑

I1∈Ik1 ,I2∈Inl...,Ij∈Inl

PI1···Ij (δ0 ◦ (f
(1)
I1

◦ · · · ◦ f(j)Ij
)−1).
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Moreover, {νj} converges weakly to µ. Then limj→∞ ν̂j = µ̂ and for ξ ∈ R

ν̂j(ξ) =
∑

I1∈Ik1 ,I2∈Inl...,Ij∈Inl

PI1···Ije
2πi(RI1d

(1)
I1

+RI1RI2d
(2)
I2

+···+RI1RI2 ···RIj d
(j)
Ij

)ξ
,

(4.1)

where RIs , d
(s)
Is

∈ D(s), P
(s)
Is

∈ P(s) for 1 ≤ s ≤ j are defined by (2.3). Note
0 ∈ Dk for k ≥ 1 and Dkj = Dkj−l for j ≥ 2. Without loss of generality, we
can assume

d
(k)
1 = 0, r−l+1

1 d
(kj−l)
2 − d

(kj)
2 = (r−l+1

1 − 1)d
(kj)
2 = 1, k ≥ 1, j ≥ 2.

Denote Ī =

nl−1︷ ︸︸ ︷
1 · · · 1 2, Ĩ =

(n−1)l︷ ︸︸ ︷
1 · · · 1 2

l−1︷ ︸︸ ︷
1 · · · 1. One can verify

RĪ = rnl−1
1 r2 = RĨ, d

(j)

Ī
= d

(kj)
2 , d

(j)

Ĩ
= r−l+1

1 d
(kj−l)
2 .

Then (4.1) implies

|ν̂j(ξ)| ≤
∑

I1∈Ik1

P
(1)
I1

( ∑
I2∈Inl,I2 ̸=Ī,Ĩ

P
(2)
I2

∣∣∣ ∑
I3∈Inl

P
(3)
I3

e2πiR
I1RI2RI3d

(3)
I3

ξ

(4.2)

· · ·
( ∑

Ij∈Inl

P
(j)
Ij

e
2πiRI1RI2 ···RIj d

(j)
Ij

ξ
)∣∣∣+ P

(2)

Ī
(1− 2πεnl∥RI1Īξ∥2)

×
∣∣∣ ∑
I3∈Inl

P
(3)
I3

e2πiR
I1RĪRI3d

(3)
I3

ξ · · ·
( ∑

Ij∈Inl

P
(j)
Ij

e
2πiRI1RĪ···RIj d

(j)
Ij

ξ
)∣∣∣

+ P
(2)

Ĩ
(1− 2πεnl∥RI1Ĩ2ξ∥2)

∣∣∣ ∑
I3∈Inl

P
(3)
I3

e2πiR
I1RĨRI3d

(3)
I3

ξ

· · ·
( ∑

Ij∈Inl

P
(j)
Ij

e
2πiRI1RĨ···RIj d

(j)
Ij

ξ
)∣∣∣),

where we have used the inequality |1+ e2πix| ≤ 2
(
1− π∥x∥2

)
and ∥x∥ denotes

the distance from x ∈ R to the nearest integer, P
(2)

Ī
,P

(2)

Ĩ
≥ εnl.

Recall I = {1, 2, . . . ,m} and let ϑ be the empty word. For 1 ≤ s ≤ j and a
word I = I1I2 · · · Ij ∈ Ikj , let I|0 = ϑ, I|s = I1I2 · · · Is be the prefix of I. We
write

RI|0 = 1, RI|s = RI1RI2 · · ·RIs , PI|s = P
(1)
I1

P
(2)
I2

· · ·P(s)
Is

.

By iterating the inequality (4.2), we obtain

|ν̂j(ξ)| ≤
∑

I∈Ikj

PI

∏
s:Is=Ī,Ĩ

(
1− 2πεnl∥RI|sξ∥2

)
, j ≥ 2.(4.3)
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Given ω = I′s+1I
′
s+2 · · · I

′
s′ , s

′ ≥ s+ 1, let

I|sω = I1I2 · · · IsI′s+1I
′
s+2 · · · I

′
s′

be the concatenation of I|s and ω. Denote I|s → I ′ if I ′ = I|sI′s+1 and
call I|s → I ′ an edge. It is easy to see that there are at most m̃ different
elements in {RI : I ∈ Inl}. Denote I|s ⇝ I ′ if I ′ = I|s or I ′ = I|sω, where
ω = I′s+1I

′
s+2 · · · I

′
s′ satisfies s + 1 ≤ s′ ≤ s + m̃ and that the elements of

{RI′s+1 , RI′s+2 , · · · , RI′
s′} are distinct. We identify I|s with the path I|0 →

I|1 → · · · → I|s and denote this path by Γ(I|s). Further, we can define a path
from I|s to I|s′ (0 ≤ s < s′ ≤ j) by I|s → I|s+1 → · · · → I|s′ , which is denoted
by Γ(I|s, I|s′). In this case, we call I|s′ an (s′ − s)-level descendant of I|s. It is
easy to see that if I|s ⇝ I ′, then I ′ = I|s, or I ′ is a descendant of I|s of level
≤ m̃.

Definition 4.2. Let ρ = 1
2(1+bnl)(1+2bnl)

, ξ > 0, R ∈ [b−1, a−1]m, and let

I ∈ Ikj , j ≥ 1. I is called (R, ξ, ρ)-good if RIξ ≥ 1 and ∥RIξ∥ ≥ ρ. We call
that I is on an (R, ξ, ρ)-good track if there exist I ′ ∈ Ikj′ , j′ ≥ j such that I ′

is (R, ξ, ρ)-good and I ⇝ I ′.

Definition 4.3. Fix 3 ≤ n1 ∈ N and ρ = 1
2(1+bnl)(1+2bnl)

, and let Fj =

Fj(n1, ρ) be the set of R ∈ [b−1, a−1]m such that there exist ξ ∈ [akj−nl, akj ],
I ∈ Ikj satisfying

Card
({

m̃+ 1 ≤ s ≤ j − m̃− 1 : I|s is on an (R, ξ, ρ)-good track
})

≤ j

n1
,

and let F = lim supj→∞ Fj(n1, ρ).

For R /∈ F , we now prove the power Fourier decay of µ. From the definition
of F , it follows that R /∈ Fj(n1, ρ) for all j sufficiently large. Fix such a
j, the definition of Fj(n1, ρ) tells us that for every ξ ∈ [akj−nl, akj ], and for
every I ∈ Ikj , the number of words on an (R, ξ, ρ)-good track on the path

Γ(I|m̃+1, I|j−m̃−1) is greater than
j
n1

. For a fixed ξ, we will omit (R, ξ, ρ) when
talking about words that are good or on a good track.

To prove the power Fourier decay, we consider Ikj as a probability space,
provided a measure P : P(I) = PI for I ∈ Ikj . Further, for 1 ≤ s ≤ j,

0 ≤ i ≤ m̃, we define following random variables: X
(i)
s is the number of words

on the path Γ(I|s) having a good word among its i-level descendants; Xs = X
(0)
s

is the number of good words on the path Γ(I|s). Note that if I|s belongs to
the path Γ(I|m̃+1, I|j−m̃−1) and it is on a good track, then there is a good
word among its m̃-level descendants. Moreover, the correspondence is at most
(m̃ + 1)-to-1. From R /∈ Fj(n1, ρ) and the definition of Fj(n1, ρ), it follows
that for every I ∈ Ikj ,

X
(m̃)
j (I) ≥ j

(m̃+ 1)n1
.(4.4)

We give some lemmas that are needed in the proof of the Fourier decay.
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Lemma 4.4. For 0 ≤ i ≤ m̃, there exist αi, βi ∈ R+ and γi ∈ R such that

P(X(i)
j ≤ αij) ≤ γie

−βij for j large enough.

Proof. We prove the lemma by induction. For i = m̃, (4.4) implies P(X(m̃)
j ≤

j
2(m̃+1)n1

) = 0. Hence, the lemma holds in this case. Suppose 0 ≤ i ≤ m̃ − 1

and the lemma holds for i + 1. We define a sequence of random variables{
Z

(i)
s : Z

(i)
s =

X
(i)
s+1

2εnl −X
(i+1)
s

}j−1

s=1
. We make a claim.

Claim 4.5. {Z(i)
s }j−1

s=1 is a submartingale.

Proof. To prove the claim, we only need show that

E(Z(i)
s |Z(i)

s−1, Z
(i)
s−2, . . . , Z

(i)
1 ) ≥ Z

(i)
s−1.

We firstly consider the relationship between X
(i+1)
s and X

(i+1)
s−1 . For I ∈ Ikj ,

if I|s has no good descendant of level i + 1, then X
(i+1)
s (I) = X

(i+1)
s−1 (I); if

I|s has a good descendant of level i + 1, then X
(i+1)
s (I) = X

(i+1)
s−1 (I) + 1. In

conclusion, we have either X
(i+1)
s (I) = X

(i+1)
s−1 (I) or X

(i+1)
s (I) = X

(i+1)
s−1 (I)+1.

In the former case, it implies that I|s+1 has no good descendant of level i,

it follows X
(i)
s (I) = X

(i)
s+1(I) and Z

(i)
s (I) = Z

(i)
s−1(I). In the later case, we

obtain that I|s+1 has a good descendant of level i with probability ≥ 2εnl.

It means that X
(i)
s (I) = X

(i)
s+1(I) or X

(i)
s+1(I) = X

(i)
s (I) + 1. It follows that

Z
(i)
s (I) = Z

(i)
s−1(I) − 1 or Z

(i)
s (I) = Z

(i)
s−1(I) +

1
2εnl − 1. According to these

relationships, we can give a sequence of partitions of Ikj . Let

Ωs = {I : X(i+1)
s (I) = X

(i+1)
s−1 (I)}, Ωc

s = {I : X(i+1)
s (I) = X

(i+1)
s−1 (I) + 1};

Ψs = {I : X
(i)
s+1(I) = X(i)

s (I)}, Ψc
s = {I : X

(i)
s+1(I) = X(i)

s (I) + 1}.

Then Ikj = Ω2 ∪Ωc
2 = · · · = Ωkj

∪Ωc
kj

= Ψ1 ∪Ψc
1 = · · · = Ψkj−1 ∪Ψc

kj−1. We
get

E(Z(i)
s |Z(i)

s−1, Z
(i)
s−2, . . . , Z

(i)
1 )

= Z
(i)
s−1P(Ωs|Z(i)

s−1, Z
(i)
s−2, . . . , Z

(i)
1 )+(Z

(i)
s−1 − 1)P(Ωc

s ∩Ψs|Z(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 )

+ (Z
(i)
s−1 +

1

2εnl
− 1)P(Ωc

s ∩Ψc
s|Z

(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 ).

Note Ikj = Ωs ∪ (Ωc
s ∩Ψs) ∪ (Ωc

s ∩Ψc
s), we have

E(Z(i)
s |Z(i)

s−1, Z
(i)
s−2, . . . , Z

(i)
1 )

= Z
(i)
s−1 − P(Ωc

s ∩Ψs|Z(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 ) + P(Ωc

s ∩Ψc
s|Z

(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 )

× (
1

2εnl
− 1)

= Z
(i)
s−1 +

1

2εnl
P(Ωc

s ∩Ψc
s|Z

(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 )− P(Ωc

s|Z
(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 ).
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From P(Ωc
s ∩Ψc

s|Z
(i)
s−1, Z

(i)
s−2, . . . , Z

(i)
1 ) ≥ 2εnl, it follows the claim. □

We will prove the lemma by using the Azuma-Hoeffding inequality [1], which
says that, if {ui}ki=1 is a submartingale (or martingale) and satisfies |ui+1−ui| ≤

ai, then P(uk − u1 ≤ −v) ≤ e
−v2

2
∑k−1

i=2
a2
i . From the proof of Claim 4.5, we obtain

|Z(i)
s − Z

(i)
s−1| ≤ 1

2εnl . Let v = αi+1j
4 , by Azuma-Hoeffding inequality, we have

P
(
Z

(i)
j−1 − Z

(i)
1 ≤ −αi+1j

4

)
≤ e−

ε2nlα2
i+1j2

8(j−2) ≤ e−
ε2nlα2

i+1j

8 .

Note that Z
(i)
1 is bounded. Then for j large enough,

P
(
Z

(i)
j−1 ≤ −αi+1j

2

)
≤ P

(
Z

(i)
j−1 − Z

(i)
1 ≤ −αi+1j

4

)
≤ e−

ε2nlα2
i+1j

8 .

Recall that X
(i)
j = 2ε2nl(Z

(i)
j−1 +X

(i+1)
j−1 ) and

P
(
X

(i+1)
j ≤ αi+1j

)
≤ γi+1e

−βi+1j

by the inductive assumption. Hence, for j large enough,

P
(
X

(i)
j ≤ 8ε2nlαi+1j

)
≤ P

(
X

(i+1)
j−1 ≤ 3αi+1j

4

)
+ P

(
Z

(i)
j−1 ≤ −αi+1j

2

)
≤ P

(
X

(i+1)
j ≤ αi+1j

)
+ P

(
Z

(i)
j−1 ≤ −αi+1j

2

)
≤ γi+1e

−βi+1j + e−
ε2nlα2

i+1j

8 .

It follows the lemma. □

Let’s return to the proof of the Fourier decay for the case R /∈ F and ξ ∈
[akj−nl, akj ]. For the inequality (4.3), we split it into two cases: (i)Xj(I) < α0j,
(ii) Xj(I) ≥ α0j, where α0 is given by Lemma 4.4. Then (4.3) becomes

|ν̂j(ξ)| ≤
∑

I∈Ikj

PI

∏
s:Is=Ī,Ĩ

(
1− 2πεnl∥RI|sξ∥2

)
=

∑
I:Xj(I)<α0j

PI

∏
s:Is=Ī,Ĩ

(
1− 2πεnl∥RI|sξ∥2

)
+

∑
I:Xj(I)≥α0j

PI

∏
s:Is=Ī,Ĩ

(
1− 2πεnl∥RI|sξ∥2

)
≤

∑
I:Xj(I)<α0j

PI +
∑

I:Xj(I)≥α0j

∏
s:Is=Ī,Ĩ

(
1− 2πεnl∥RI|sξ∥2

)
.

From Lemma 4.4 and the definition of Xj , we have

|ν̂j(ξ)| ≤ P(Xj ≤ α0j) + (1− 2πεnlρ2)α0j ≤ γ0e
−β0j + (1− 2πεnlρ2)α0j .
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Note ξ ∈ [akj−nl, akj ] = [ak1+(j−1)nl, ak1+jnl]. We have

|ν̂j(ξ)| ≤ γ0ξ
−1

2nl ln b + ξ
α0 ln(1−2πεnlρ2)

2nl ln b

for j large enough. Note that ν̂j(ξ) converges uniformly to µ̂(ξ) on each
compact set and that j, ξ are arbitrary. Then µ ∈ D(α), α = min{ 1

2nl ln b ,
α0 ln(1−2πεnlρ2)

−2nl ln b }.
It remains to estimate dimH F . Fix R ∈ F = lim supj→∞ Fj(n1, ρ). Then

R ∈ Fj(n1, ρ) for infinitely many j. Fix such an enough large j, there ex-
ist ξ ∈ [akj−nl, akj ], I ∈ Ikj such that Card

({
m̃ + 1 ≤ s ≤ j − m̃ − 1 :

I|s is on an (R, ξ, ρ)-good track
})

≤ j
n1

. Let RI|sξ = c(I|s) + ϵ(I|s), where
c(I|s) is the nearest integer to RI|s and |ϵ(I|s)| = ∥RI|s(ξ)∥. We are going to
give a cover for Fj(n1, ρ). To this end, we introduce the following lemmas.

Lemma 4.6. Let ρ = 1
2(1+bnl)(1+2bnl)

, B = (1 + bnl)(1 + 2bnl) + 1. For

I|s+2, I|s+1, I|s, 1 ≤ s ≤ j − 2, if I|s+2 = I|s+1Is+2 = I|sIs+1Is+2, Is+1 =
Is+2 ∈ Inl and c(I|s+2) ≥ 1, then following statements hold:

(1) Given c(I|s+2) and c(I|s+1), there are at most B choices for c(I|s);
(2) Given c(I|s+2) and c(I|s+1), if max{|ϵ(I|s)|, |ϵ(I|s+1)|, |ϵ(I|s+2)|} < ρ,

then c(I|s) is uniquely determined.

Proof. From the assumption, we have

RI|sξ=c(I|s)+ϵ(I|s), RI|s+1ξ=c(I|s+1)+ϵ(I|s+1), R
I|s+2ξ=c(I|s+2)+ϵ(I|s+2).

It implies

c(I|s+1)

c(I|s+2)
=

RI|s+1ξ − ϵ(I|s+1)

RI|s+2ξ − ϵ(I|s+2)
≤

RI|s+1ξ + 1
2

RI|s+2ξ
≤ 2RI|s+1ξ

RI|s+2ξ

= 2(RIs+2)−1 ≤ 2bnl,∣∣∣(RIs+1)−1 − c(I|s)
c(I|s+1)

∣∣∣ = |ϵ(I|s)− (RIs+1)−1ϵ(I|s+1)|
c(I|s+1)

≤ |ϵ(I|s)|+ bnl|ϵ(I|s+1)|
c(I|s+1)

,∣∣∣(RIs+2)−1 − c(I|s+1)

c(I|s+2)

∣∣∣ = |ϵ(I|s+1)− (RIs+2)−1ϵ(I|s+2)|
c(I|s+2)

≤ |ϵ(I|s+1)|+ bnl|ϵ(I|s+2)|
c(I|s+2)

.

From above inequalities, it follows∣∣∣c(I|s)− c2(I|s+1)

c(I|s+2)

∣∣∣
≤ c(I|s+1)

(∣∣∣ c(I|s)
c(I|s+1)

− (RIs+1)−1
∣∣∣+ ∣∣∣(RIs+1)−1 − c(I|s+1)

c(I|s+2)

∣∣∣)
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≤ c(I|s+1)
(∣∣∣ c(I|s)

c(I|s+1)
− (RIs+1)−1

∣∣∣)+ c(I|s+1)

c(I|s+2)
c(I|s+2)

×
(∣∣∣(RIs+1)−1 − c(I|s+1)

c(I|s+2)

∣∣∣)
≤ |ϵ(I|s)|+ bnl|ϵ(I|s+1)|+ 2bnl(|ϵ(I|s+1)|+ bnl|ϵ(I|s+2)|)

≤ (1 + bnl)(1 + 2bnl)max{|ϵ(I|s)|, |ϵ(I|s+1)|, |ϵ(I|s+2)|}.

Now both parts of the lemma are immediate since c(I|s) ∈ N. □

Lemma 4.7. Let ρ,B be given by Lemma 4.6. If I|s → I ′ and we are given
c(ω′) for all ω′ such that I ′ ⇝ ω′ and c(ω′) ≥ 1. Then following statements
hold:

(1) for I|s ⇝ ω, there are at most B choices for c(ω);
(2) for I|s ⇝ ω, if neither ω nor ω′ is (R, ξ, ρ)-good, then c(ω) is uniquely

determined.

Proof. Since I|s → I ′, there exists I′s+1 ∈ Inl such that I ′ = I|sI′s+1. Fix

a ω such that I|s ⇝ ω. Then ω = I|sĨs+1 · · · Ĩs′ , where Ĩs+1 · · · Ĩs′ satisfies

s+ 1 ≤ s′ ≤ s+m and that the elements of {RĨs+1 , . . . , RĨs′} are distinct.

If RI′s+1 ∈ {RĨs+1 , . . . , RĨs′}, without loss of generality, we assume RI′s+1 =

RĨs+1 . Let

ω′ = I|sI′s+1Ĩs+2 · · · Ĩs′ = I ′Ĩs+2 · · · Ĩs′ .
One can verify Rω′

ξ = Rωξ, hence c(ω) = c(ω′). Since I ′ ⇝ ω′, we know that
c(ω) = c(ω′) is already known.

If RI′s+1 /∈ {RĨs+1 , . . . , RĨs′}, then s′ < s+ m̃. Let

ω′ = I ′Ĩs+1 · · · Ĩs′ = I|sI′s+1Ĩs+1 · · · Ĩs′ ,

ω′′ = I ′I′s+1Ĩs+1 · · · Ĩs′ = I|sI′s+1I
′
s+1Ĩs+1 · · · Ĩs′ .

It is easy to see I ′ ⇝ ω′, I ′ ⇝ ω′′. Hence, c(ω′), c(ω′′) are already known. Let

ω∗ = I|sĨs+1 · · · Ĩs′I′s+1 = ωI′s+1, ω∗∗ = I|sĨs+1 · · · Ĩs′I′s+1I
′
s+1 = ωI′s+1I

′
s+1.

Then ω∗∗ = ω∗I′s+1 = ωI′s+1I
′
s+1. It is easy to check Rω∗

ξ = Rω′
ξ, Rω∗∗

ξ =

Rω′′
ξ and c(ω∗) = c(ω′), c(ω∗∗) = c(ω′′). From Lemma 4.6, we can get the

desired result. □

We continue the estimate of dimH F . Let

F̃j(n1, ρ) = {(r−1
1 , r−1

2 , . . . , r−1
m ) : R = (r1, r2, . . . , rm) ∈ Fj(n1, ρ)}.

Since the function f((r−1
1 , r−1

2 , . . . , r−1
m )) = (r1, r2, . . . , rm) is bi-Lipschitz on

[a, b]m, we have dimH Fj(n1, ρ) = dimH F̃j(n1, ρ). Note for any I ∈ Ikj ,
I ∈ Inl, ∣∣∣(RI)−1 − c(I|1)

c(I|1I)

∣∣∣ ≤ 1 + bnl

2c(I|1I)
≤ 1 + bnl

2(RI|1Iξ − 1
2 )
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≤ 1 + bnl

2akj−nl

bk1+nl − 1
=

bk1+nl(1 + bnl)

2ak1+(j−2)nl − bk1+nl
.

Especially, if I =

nl︷ ︸︸ ︷
ii · · · i, 1 ≤ i ≤ m, then

∣∣∣r−1
i − nl

√
c(I|1)
c(I|1I)

∣∣∣ ≤ ∣∣∣(RI)−1 − c(I|1)
c(I|1I)

∣∣∣
≤ bk1+nl(1 + bnl)

2ak1+(j−2)nl − bk1+nl
.

Hence (r−1
1 , r−1

2 , . . . , r−1
m ) is in the ball centered at

(
nl

√
c(I|1)

c(I|11 · · · 1)
, nl

√
c(I|1)

c(I|12 · · · 2)
, . . . , nl

√
c(I|1)

c(I|1m · · ·m)

)
with diameter ∼ a−nlj . To estimate dimH F̃j(n1, ρ), we need to estimate the
number of possible pairs (c(I|1), c(I|1I)) for I ∈ Inl, I ∈ Ikj . For fixed j,
I = I1I2 · · · Ij ∈ Ikj , ξ ∈ [akj−nl, akj ], let q ∈ N be maximal, such that

RI|qξ ≥ bm̃nl.(4.5)

It is easy to see q ≤ j − m̃ and that q > m̃ when j is sufficiently large. For
any I ′ ∈ Ikj satisfying I|q ⇝ I ′, from (4.5), we get RI′

ξ ≥ 1, c(I ′) ≥ 1.
Note I|1 ⇝ I|1I for any I ∈ Inl. It is sufficient to estimate the number of
all possible different configurations of integers c(ω), where I|s ⇝ ω for each
s, 1 ≤ s ≤ q. Note that for any I|s, the number of different words ω with
I|s ⇝ ω is at most 1 + m̃+ m̃(m̃− 1) + · · ·+ m̃! < (m̃+ 1)!. From the choice
of q, it follows c(I|q) ≤ b(m̃+1)nl + 1. Since Rωξ ≤ RI|qξ for I|q ⇝ ω, we

have c(ω) ∈ [1, b(m̃+1)nl + 1]. It implies that number of possible configurations
of integers c(ω) for all ω such that I|q ⇝ ω, is at most (b(m̃+1)nl + 1)(m̃+1)!.
We obtain the estimate following the path I|q, I|q−1, . . . , I|1 backwards. For
s ≤ q, Lemma 4.7 tells us that for any ω with I|s ⇝ ω, there are at most
B choices for c(ω), if all c(ω′) are determined with I|s−1 ⇝ ω′. Moreover,
if neither ω nor ω′ is (R, ξ, ρ)-good, then c(ω) is uniquely determined. Recall
that the number of words on a good (R, ξ, ρ)-track on the path Γ(I|m̃+1, I|j−m̃)

does not exceed j
n1

. For each set Q ⊂ {1, 2, . . . , q} corresponding to the words

on a good (R, ξ, ρ)-track on the path Γ(I|m̃+1, I|j−m̃), we will obtain a subset

Q′ ⊂ {1, 2, . . . , q} with cardinality less than 2j
n1

. For each s ∈ Q′, there are

at most B(m̃+1)! new configurations of c(ω) with I|s ⇝ ω if all configurations
of c(ω′) with I|s+1 ⇝ ω′ are given. Hence, this Q yields at most (b(m̃+1)nl +
1)(m̃+1)!B(m̃+1)!(2j/n1+2(m̃+1)) total configurations of integers c(ω), where I|s ⇝
ω for each s, 1 ≤ s ≤ q. Considering all the subset Q and all possible q ≤ j,



FOURIER DECAY OF MORAN MEASURE 397

we get that the total number of configurations is at most

j

⌊j/n1⌋∑
s=1

Cs
q (b

(m̃+1)nl + 1)(m̃+1)!B(m̃+1)!(2j/n1+2(m̃+1))

< (b(m̃+1)nl + 1)(m̃+1)!B2(m̃+1)(m̃+1)!j2C
⌊j/n1⌋
j B2(m̃+1)!j/n1

< (b(m̃+1)nl + 1)(m̃+1)!B2(m̃+1)(m̃+1)!j2eB
2(m̃+1)!(ln j)/n1

,

which is independent of ξ. Note that for each ξ, we just need calculate the
words I ∈ Ikj such that {RI|s : 1 ≤ s ≤ q} distinct. It is easy to see that the

number of this kind of words is less than m̃j , we obtain that the set F̃j(n1, ρ)
may be covered by

(b(m̃+1)nl + 1)(m̃+1)!B2(m̃+1)(m̃+1)!j2eB
2(m̃+1)!(ln j)/n1

m̃j

balls of diameter ∼ a−jnl. It follows

dimH F = lim sup
j→∞

dimH Fj(n1, ρ) = lim sup
j→∞

dimH F̃j(n1, ρ)

≤ lim
j→∞

ln((b(m̃+1)nl + 1)(m̃+1)!B2(m̃+1)(m̃+1)!j2eB
2(m̃+1)!(ln j)/n1

m̃j)

− ln a−jnl

=
ln m̃

nl ln a
< ϖ.

We finish the proof of Proposition 4.1. □

Proof of Theorem 1.7. Now we prove Theorem 1.7 by using Proposition 4.1.
Let G = {R : R = (r, r, . . . , r) ∈ (0, 1)m, r ∈ (0, 1)} and (0, 1)m = ∪∞

n=2[
1
n , 1 −

1
n+1 ]

m. From Theorem 1.6, we know that there exists E ⊂ (0, 1)m such

that dimH E = 0 and for all R ∈ G \ E, for any quasi periodic sequence
{(Dk, Pk)}∞k=1, the associated Moran measure µ = µR,{Dk},{Pk} ∈ D. It re-
mains to consider R ∈ (0, 1)m \ G. For integers n, p, q ≥ 2, l ≥ 1, by Propo-
sition 4.1, there exist αn,p,q,l and Fn,p,q,l such that dimH Fn,p,q,l < 1

p and

for all R = (r1, . . . , rm) ∈ ((0, 1)m \ G) \ Fn,p,q,l with 1
n ≤ min1≤i≤m ri <

max1≤i≤m ri ≤ (1 − 1
n+1 ), for any quasi periodic sequence {(Dk, Pk)}∞k=1

with infk≥1{x : x ∈ Pk} ≥ 1
q and period l, the associated Moran measure

µ = µR,{Dk},{Pk} ∈ D(αn,p,q,l). Let

F1 =

∞⋃
l=1

∞⋃
n=2

∞⋂
p=2

∞⋃
q=2

Fn,p,q,l, F = E ∪ F1.

It is easy to see dimH F = 0, and for all R ∈ (0, 1)m \F , any quasi periodic se-
quence {(Dk, Pk)}∞k=1 with a finite quasi period, the associated Moran measure
µ = µR,{Dk},{Pk} ∈ D. □
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[10] P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939),

974–976. https://doi.org/10.2307/2371641
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