Acknowledgement
This research was supported by Kumoh National Institute of Technology(2023 ~ 2024)
References
- K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- E.K. Ryu, Infinitely Large Neural Networks, Lecture Notes in Mathematics, Research Institute of Mathematics, Number 58 (2023).
- N. Yadav, A. Yadav, M. Kumar, An introduction to neural network methods for differential equations, SpringerBriefs Appl. Sci. Technol., Springer, Dordrecht, 2015.
- R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural Ordinary Differential Equations, Proceedings of 32nd Conference on Neural Information Processing Systems(NeurIPS2018), Montreal, Canada 2018.
- M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, , 378 (2019), 686-707. https://doi.org/10.1016/j.jcp.2018.10.045
- G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nature Reviews Physics, 3 (2021), 422-440. https://doi.org/10.1038/s42254-021-00314-5
- I.E. Lagaris, A Likas, D.I. Fotiadis, Artificial Neural Networks for Solving Ordinary and Partial Differential Equations, IEEE Transactions on Neural Networks, 9 (1998), 987-1000. https://doi.org/10.1109/72.712178
- A. Malek, R.S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Appl. Math. Comput., 183 (2006), 260-271. https://doi.org/10.1016/j.amc.2006.05.068
- H. Lee, I. Kang, Neural Algorithm for Solving Differential Equations, Journal of Computational Physics, 91 (1990), 110-131 . https://doi.org/10.1016/0021-9991(90)90007-N
- M. Dissanayake, N. Phan-Thien, Neural-Network-Based Approximations for Solving Partial Differential equations, Communications in Numerical Methods in Engineering, 10 (1994), 195-201. https://doi.org/10.1002/cnm.1640100303
- B. Hillebrecht, B. Unger, Certified machine learning: A posteriori error estimation for physics-informed neural networks, Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022.
- E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations, I, 3rd ed. Berlin, Heidelberg: Springer, 2008.
- E.A. Coddington, An introduction to ordinary differential equations, Prentice-Hall Mathematics Series Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961.
- S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, IMA J. Numer. Anal., 42 (2022), 981-1022. https://doi.org/10.1093/imanum/drab032
- S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal., 43 (2023), 1-43.
- T. De Ryck, A.D. Jagtap, S. Mishra, Error estimates for physics-informed neural networks approximating the Navier-Stokes equations, IMA J. Numer. Anal., 44 (2024), 83-119.