DOI QR코드

DOI QR Code

Strength and Hydration Properties of Cement Paste as a Function of Reactive Nanomaterials Replacement Rate

반응성 나노소재 대체율에 따른 시멘트 페이스트의 강도 및 수화특성

  • 백철우 (유진기업(주) 기술연구소) ;
  • 최성우 (유진기업(주) 기술연구소) ;
  • 류득현 (유진기업(주) 기술연구소)
  • Received : 2023.12.07
  • Accepted : 2024.03.18
  • Published : 2024.03.30

Abstract

In this study, the basic properties of cement paste with varying replacement ratio of micro-silica and fumed silica were analyzed to determine the suitability of nanomaterials for use as concrete admixtures. Referring to the ultra-high strength mix, the fluidity of cement paste was evaluated according to the nanomaterial replacement rate and the compressive strength characteristics were compared and analyzed. The related properties of the reactive nanomaterials to the cement hydrate were analyzed using SEM and EDS to observe the microstructure and identify the components of the hydration product. The reactive nanomaterials used in this study had tap densities between 0.061 and 0.264 g/cm3, which were lower than SF. Micro silica exhibited excellent compressive strength properties with increasing replacement ratio, but fumed silica, unlike micro white, obtained excellent compressive strength at replacement ratio of 0.01~0.1 %. The same trend was observed in the hydration characterization.

본 연구에서는 나노소재의 콘크리트 혼화재로 사용하기에 적합한지 확인하기 위해 마이크로 실리카 및 흄드 실리카 대체율 변화에 따른 시멘트 페이스트의 기본 특성을 분석하였다. 초고강도용 배합을 참고하여 나노소재 대체율에 따른 시멘트 페이스트의 유동성을 평가와 압축강도 특성을 비교 분석하였다. 반응성 나노소재의 시멘트 수화물과의 관련 특성은 SEM, EDS 분석 이용하여 미세구조를 관찰과 수화 생성물의 구성요소 확인하였다. 본 연구에 사용한 반응성 나노소재는 탭밀도가 0.061~0.264 g/cm3 수준으로 SF 대비 낮게 측정되었다. 마이크로 실리카의 경우 대체율이 증가할수록 우수한 압축강도 특성을 나타냈지만 흄드 실리카는 마이크로 화이트와는 달리 대체율 0.01~0.1 %에서 우수한 압축강도를 확보하였다. 수화특성 분석결과에서도 동일한 경향을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 23NANO-C156177-03).

References

  1. Essawy, A.A., Aleem, S.A.E. (2014). Physico-mechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano-TiO2, Construction and Building Materials, 52, 1-8. https://doi.org/10.1016/j.conbuildmat.2013.11.026
  2. Heikal, M. (2016). Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles, Journal of Thermal Analysis and Calorimetry, 126, 1077-1087. https://doi.org/10.1007/s10973-016-5715-0
  3. Jeong, Y.U., Kim, J.H., Oh, S.W., Cho, Y.K., Jung, S.H. (2021). Compressive strength development of high-strength cement composites through mixture proportion, Proceedings of the Korea Concrete Institute, 33(2), 311-312 [in Korean].
  4. Kim, W.W., Moon, J.H., Baek, C.W., Yang, K.H. (2021). Experimental study on the applicability of reactivity SiO2 nano-materials as cement composites, Journal of the Korean Recycled Construction Resources Institute, 9(4), 529-536 [in Korean]. https://doi.org/10.14190/JRCR.2021.9.4.529
  5. Korean Standards Association (2023). KS L 5405, Fly Ash, 10-11.
  6. Li, G. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete research, 34(6), 1043-1049. https://doi.org/10.1016/j.cemconres.2003.11.013
  7. Li, H., Xiao, H.G., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  8. Nili, M., Ehsani, A., Shabani, K. (2010). Influence of nano-SiO2 and micro-silica on concrete performance, Second International Conference on Sustainable Construction Materials and Technologies, 1-5.
  9. OCI Company Ltd. (2018). KONASIL Fumed Silica catalogue, 6.
  10. Sobolev, K., Gutierrez, M.F. (2005). How nanotechnology can change the concrete world, American Ceramic Society Bulletin, 84(11), 14-17.
  11. Seo, J.M. (2005). Optimization of Mix Proportions of High-Performance Concrete for Bridge Deck Overlay, Master's Thesis, Konkuk University [in Korean].
  12. Sanchez, F., Sobolev, K. (2010). Nanotechnology in concrete-a review, Construction and Building Materials, 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  13. Silica Fume Association. (2005). Silica Fume User's Manual, USA.
  14. Whatmore, R.W., Corbett, J. (1995). Nanotechnology in the marketplace, Computing and Control Journal, 6, 105-107.