참고문헌
- Woo SH, Jung BC. Big data analytics in RNA-sequencing. Korean J Clin Lab Sci. 2023;55:235-243. https://doi.org/10.15324/kjcls.2023.55.4.235
- Jung BC, You D, Lee I, Li D, Schill RL, Ma K, et al. TET3 plays a critical role in white adipose development and diet-induced remodeling. Cell Rep. 2023;42:113196. https://doi.org/10.1016/j.celrep.2023.113196
- Kim TK, Bae EJ, Jung BC, Choi M, Shin SJ, Park SJ, et al. Inflammation promotes synucleinopathy propagation. Exp Mol Med. 2022;54:2148-2161. https://doi.org/10.1038/s12276-022-00895-w
- Park S, Lee C, Ku BM, Kim M, Park WY, Kim NKD, et al. Paired analysis of tumor mutation burden calculated by targeted deep sequencing panel and whole exome sequencing in non-small cell lung cancer. BMB Rep. 2021;54:386-391. https://doi.org/10.5483/bmbrep.2021.54.7.045
- Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021;13:36. https://doi.org/10.1038/s41368-021-00146-0
- Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377-382. https://doi.org/10.1038/nmeth.1315
- Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50:1-14. https://doi.org/10.1038/s12276-018-0071-8
- Haque A, Engel J, Teichmann SA, Lonnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9:75. https://doi.org/10.1186/s13073-017-0467-4
- Mair F, Erickson JR, Voillet V, Simoni Y, Bi T, Tyznik AJ, et al. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep. 2020;31:107499. https://doi.org/10.1016/j.celrep.2020.03.063
- Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049
- Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20:63. https://doi.org/10.1186/s13059-019-1662-y
- Yang S, Corbett SE, Koga Y, Wang Z, Johnson WE, Yajima M, et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 2020;21:57. https://doi.org/10.1186/s13059-020-1950-6
- Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29. https://doi.org/10.1186/s13059-016-0888-1
- Osorio D, Cai JJ. Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinformatics. 2021;37:963-967. https://doi.org/10.1093/bioinformatics/btaa751
- Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, et al. A single-cell atlas of human and mouse white adipose tissue. Nature. 2022;603:926-933. https://doi.org/10.1038/s41586-022-04518-2
- Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281-291.e9. https://doi.org/10.1016/j.cels.2018.11.005
- McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329-337.e4. https://doi.org/10.1016/j.cels.2019.03.003
- Xi NM, Li JJ. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 2021;12:176-194.e6. https://doi.org/10.1016/j.cels.2020.11.008
- Lu J, Sheng Y, Qian W, Pan M, Zhao X, Ge Q. scRNA-seq data analysis method to improve analysis performance. IET Nanobiotechnol. 2023;17:246-256. https://doi.org/10.1049/nbt2.12115
- Wu Y, Zhang K. Tools for the analysis of high-dimensional single-cell RNA sequencing data. Nat Rev Nephrol. 2020;16:408-421. https://doi.org/10.1038/s41581-020-0262-0
- Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75. https://doi.org/10.1186/s13059-016-0947-7
- Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods. 2017;14:565-571. https://doi.org/10.1038/nmeth.4292
- Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 2022;23:27. https://doi.org/10.1186/s13059-021-02584-9
- Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. https://doi.org/10.1186/s13059-019-1874-1
- Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40:16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
- Yang P, Huang H, Liu C. Feature selection revisited in the single-cell era. Genome Biol. 2021;22:321. https://doi.org/10.1186/s13059-021-02544-3
- Sheng J, Li WV. Selecting gene features for unsupervised analysis of single-cell gene expression data. Brief Bioinform. 2021;22:bbab295. https://doi.org/10.1093/bib/bbab295
- Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15:e8746. https://doi.org/10.15252/msb.20188746
- Do VH, Canzar S. A generalization of t-SNE and UMAP to single-cell multimodal omics. Genome Biol. 2021;22:130. https://doi.org/10.1186/s13059-021-02356-5
- Meyer BH, Pozo ATR, Nunan Zola WM. Global and local structure preserving GPU t-SNE methods for large-scale applications. Expert Syst Appl. 2022;201:116918. https://doi.org/10.1016/j.eswa.2022.116918
- Lee JA, Renard E, Bernard G, Dupont P, Verleysen M. Type 1 and 2 mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing. 2013;112:92-108. https://doi.org/10.1016/j.neucom.2012.12.036
- Ge H, Zhu Z, Lou K, Wei W, Liu R, Damasevicius R, et al. Classification of infrared objects in manifold space using Kullback-Leibler divergence of gaussian distributions of image points. Symmetry. 2020;12:434. https://doi.org/10.3390/sym12030434
- Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 2019;10:5416. https://doi.org/10.1038/s41467-019-13056-x
- Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2018. [Epub ahead of print]. https://doi.org/10.1038/nbt.4314
- Sainburg T, McInnes L, Gentner TQ. Parametric UMAP embed-dings for representation and semisupervised learning. Neural Comput. 2021;33:2881-2907. https://doi.org/10.1162/neco_a_01434
- Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16:1-9. https://doi.org/10.1038/s41596-020-00409-w
- Kobak D, Linderman GC. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat Biotechnol. 2021;39:156-157. https://doi.org/10.1038/s41587-020-00809-z
- Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019;9:5233. https://doi.org/10.1038/s41598-019-41695-z
- Hairol Anuar SH, Abas ZA, Yunos NM, Mohd Zaki NH, Hashim NA, Mokhtar MF, et al. Comparison between Louvain and Leiden algorithm for network structure: a review. J Phys Conf Ser. 2021;2129:012028. https://doi.org/10.1088/1742-6596/2129/1/012028
- El Bouchefry K, de Souza RS. Learning in big data: introduction to machine learning. In: Skoda P, Adam F, editors. Knowledge discovery in big data from astronomy and earth observation: AstroGeoInformatics. Elsevier: 2020. p. 225-249.
- Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. https://doi.org/10.1186/s13059-017-1382-0
- Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation. 2019;140:2089-2107. https://doi.org/10.1161/circulationaha.119.041694
- Qiu P. Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun. 2020;11:1169. https://doi.org/10.1038/s41467-020-14976-9
- Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, et al. Confronting false discoveries in single-cell differential expression. Nat Commun. 2021;12:5692. https://doi.org/10.1038/s41467-021-25960-2
- Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018;15: 255-261. https://doi.org/10.1038/nmeth.4612
- Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol. 2021;22:465-482. https://doi.org/10.1038/s41580-021-00357-7
- Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518-528. https://doi.org/10.1038/nrm3629
- Song D, Li JJ. PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data. Genome Biol. 2021;22:124. https://doi.org/10.1186/s13059-021-02341-y
- Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019; 37:547-554. https://doi.org/10.1038/s41587-019-0071-9
- Greenblatt MB, Ono N, Ayturk UM, Debnath S, Lalani S. The un-mixing problem: a guide to applying single-cell RNA sequencing to bone. J Bone Miner Res. 2019;34:1207-1219. https://doi.org/10.1002/jbmr.3802
- Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-386. https://doi.org/10.1038/nbt.2859
- Zhang Y, Tran D, Nguyen T, Dascalu SM, Harris FC Jr. A robust and accurate single-cell data trajectory inference method using ensemble pseudotime. BMC Bioinformatics. 2023;24:55. https://doi.org/10.1186/s12859-023-05179-2
- Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 2023;22:496-520. https://doi.org/10.1038/s41573-023-00688-4
- Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140:2228-2247. https://doi.org/10.1182/blood.2022015853
- Kim N, Eum HH, Lee HO. Clinical perspectives of single-cell RNA sequencing. Biomolecules. 2021;11:1161. https://doi.org/10.3390/biom11081161
- Riess JW, Gandara DR, Frampton GM, Madison R, Peled N, Bufill JA, et al. Diverse EGFR exon 20 insertions and co-occurring molecular alterations identified by comprehensive genomic profiling of NSCLC. J Thorac Oncol. 2018;13:1560-1568. https://doi.org/10.1016/j.jtho.2018.06.019
- Vincent MD, Kuruvilla MS, Leighl NB, Kamel-Reid S. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS. Curr Oncol. 2012;19(Suppl 1):S33-S44. https://doi.org/10.3747/co.19.1149
- Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;30:745-762. https://doi.org/10.1038/s41422-020-0355-0