과제정보
이 논문(저서)은 2022학년도 경북대학교 연구년 교수 연구비에 의하여 연구되었음.
참고문헌
- Ahmed, M.A.T., Zhangcan, H., Fan, X., and Liu, H.M. (2016). "Detection crack in image using Otsu method and multiple filtering in image processing techniques." Optik - Internal Journal Light Electron Optik, 127(3), pp. 1030-1033. https://doi.org/10.1016/j.ijleo.2015.09.147
- Bernard, B., and Richard, J.O. (1976). "Elastic moduli of a cracked solid," International Journal of Solids Structure, 12(2), pp. 81-87. https://doi.org/10.1016/0020-7683(76)90044-5
- Cha, Y.J., Choi, W., and Buyukozturk, O. (2017). "Deep learning-based crack damage detection using convolutional neural networks." Computer-Aided Civil and Infrastructure Engineering, 32(5), pp. 361-378. https://doi.org/10.1111/mice.12263
- D. Dhital, J.R., and Lee (2012). "A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation." Exp. Mech, 52(8), pp. 1111-1122. https://doi.org/10.1007/s11340-011-9567-z
- Dung, C.V. (2019). "Autonomous concrete crack detection using deep fully convolutional neural network." Automation in Construction, 99, pp. 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Fabio, C.P., and Carlos, E.P. (2015). "Embedded image processing systems for automatic recognition of cracks using UAVs." IFAC-PapersOnLine, 48(10), pp. 6-21.
- Gong, X., Yao, Q., Wang, M., and Lin, Y. (2018). "A deep learning approach for oriented electrical equipment detection in thermal images." IEEE Access , 6, pp. 41590-41597. https://doi.org/10.1109/ACCESS.2018.2859048
- Jacob, A. (1987). "Stiffness reduction of cracked solids." Engineering Fractures Mechanics, 26(5), pp. 637-650. https://doi.org/10.1016/0013-7944(87)90129-9
- Kim, B., Choi, S.W., Hu, G., Lee, D.E., and Serfa Juan, R.O. (2022). "An Automated Image-Based Multivariant Concrete Defect Recognition Using a Convolutional Neural Network with an Integrated Pooling Module." Sensors, 22(9), p. 3118.
- Kim, B., Choi, S.W., Hu, G., Lee, D.E., and Serfa Juan, R.O. (2021). "Multivariate Analysis of Concrete Image Using Thermography and Edge Detection." Sensors, 21(21), p. 7396.
- Kim, B., Yuvaraj, N., Sri Preethaa, K.R., Santhosh, R., and Sabari, A. (2020). "Enhanced pedestrian detection using optimized deep convolution neural network for smart building surveillance." Soft Computing, 24(22), pp. 17081-17092. https://doi.org/10.1007/s00500-020-04999-1
- Patrik, B. (2013). "Surface crack detection in welds using thermography." NDT and E International, 57, pp. 69-73. https://doi.org/10.1016/j.ndteint.2013.03.008
- Sanchez-Cauce, R., Perez-Martin, J., and Luque, M. (2021). "Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data." Computer Methods and Programs in Biomedicine, 204, p. 106045.
- Szymanik, B., Frankowski, P.K., Chady, T., and John Chelliah, C.R.A. (2016). "Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors." Sensors, 16(2), p. 234.
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., and Yang, X. (2018). "Automatic pixel-level crack detection and measurement using fully convolutional network." Computer-Aided Civil and Infrastructure Engineering, 33(12), pp. 1090-1109. https://doi.org/10.1111/mice.12412
- Yusuke, F., and Yoshihiko, H. (2011). "A robust automatic crack detection method from noisy concrete surfaces." Machine Visual Applications, 22 (2), pp. 245-254. https://doi.org/10.1007/s00138-009-0244-5