DOI QR코드

DOI QR Code

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ (Department of Mathematics, Sri Paramakalyani College) ;
  • S. PRABHU (Department of Mathematics, Sri Paramakalyani College)
  • Received : 2023.11.15
  • Accepted : 2024.02.20
  • Published : 2024.03.30

Abstract

Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

Keywords

Acknowledgement

The Referee provided valuable suggestions that helped the authors enhance their paper, which they gratefully thank.

References

  1. M. Bapat, Product cordial labeling of some fusion graphs, Internat. J. Math. Trends and Tech. 50 (2017), 125-129. 
  2. C.M. Barasara, Edge and total edge product cordial labeling of some new graphs, Internat. Engin. Sci. Math. 7 (2018), 263-273. 
  3. I. Cahit, Cordial graphs: a weaker versionof graceful and harmonious graphs, Ars comb. 23 (1987), 201-207. 
  4. I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendiek(ed.), Wissenschaftsverlag Mannheim, 1990, 209-230. 
  5. U. Deshmukh and V.Y. Shaikh, Mean cordial labeling of some star related graphs, Internat. J. Math. Combin. 3 (2016), 146-157. 
  6. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 24 (2021). 
  7. F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972. 
  8. W.W. Kirchherr, On the cordiality of some specific graphs, Ars Combin. 31 (1991), 127-138. 
  9. D. Kuo, G. Chang, and Y.H. Kwong, Cordial labeling of mKn, Discrete Math. 169 (1997), 121-131.  https://doi.org/10.1016/S0012-365X(95)00336-U
  10. P. Lawrence Rozario Raj and R. Lawrence Joseph Manoharan, Divisor ordial labeling of some disconnected graphs, Internat. J. Math. Trends and Tech. 15 (2014), 49-63.  https://doi.org/10.14445/22315373/IJMTT-V15P508
  11. R. Patrias and O. Pechenik, Path-cordial abelian groups, Australas. J. Combin. 80 (2021), 157-166. 
  12. U. Prajapati and A.V. Vacntiya, SD-Prime cordial labeling of alternate k-polygonal snake of various types, Proyecciones 40 (2021), 619-634.  https://doi.org/10.22199/issn.0717-6279-4015
  13. R. Ponraj, A. Gayathri and S. Somasundaram, Pair difference cordial labeling of graphs, J. Math. Compt. Sci. 11 (2021), 2551-2567. 
  14. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs, Journal of Algorithms and Computation 54 (2022), 1-10. 
  15. R. Ponraj and S. Prabhu , Pair Mean Cordial labeling of some corona graphs, Journal of Indian Acad. Math. 44 (2022), 45-54. 
  16. R. Ponraj and S. Prabhu, Pair mean cordiality of some snake graphs, Global Journal of Pure and Applied Mathematics 18 (2022), 283-295. 
  17. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs obtained from path and cycle, J. Appl. & Pure Math. 4 (2022), 85-97. 
  18. R. Ponraj and S. Prabhu, On pair mean cordial graphs, Journal of Applied and Pure Mathematics 5 (2023), 237-253. 
  19. M.A. Seoud and H.F. Helmi, On product cordial graphs, Ars Combin. 101 (2011), 519-529. 
  20. M.A. Seoud and M. Aboshady, Further results on pairity combination cordial labeling, J. Egyptian Math. Soc. 28 (2020), 10 pp. 
  21. M.A. Seoud and A.E.I. Abdel Maqsoud, On cordial and balanced labeling of graphs, J. Egyptian Math. Soe. 7 (1999), 127-135. 
  22. M.A. Seoud and H. Jaber, Prime cordial and 3-equitable prime cordial graphs, Util. Math. 111 (2019), 95-125. 
  23. M.A. Seoud and M.A. Salim, Two upper bounds of prime cordial graphs, JCMCC 75 (2010), 95-103. 
  24. S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213.