DOI QR코드

DOI QR Code

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO (Department of Mathematics, Hannam University)
  • 투고 : 2023.04.28
  • 심사 : 2024.03.04
  • 발행 : 2024.03.30

초록

In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

키워드

참고문헌

  1. Yue Cai, Margaret A. Readdy, q-Stirling numbers, Advances in Applied Mathematics 86 (2017), 50-80. https://doi.org/10.1016/j.aam.2016.11.007
  2. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q parameter, Journal of Number Theory 152 (2015), 38-54. https://doi.org/10.1016/j.jnt.2014.12.004
  3. L. Carlitz, Weighted Stirling numbers of the first kind and second kind-I, Fibonacci Quart 18 (1980), 147-162.
  4. U. Duran, M. Acikoz, S. Araci, On (q, r, w)-stirling numbers of the second kind, Journal of Inequalities and Special Functions 9 (2018), 9-16.
  5. K.W. Hwang, B.R. Nam, N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. & Informatics 35 (2017), 611-621. https://doi.org/10.14317/jami.2017.611
  6. Burak Kurt, Some identities for the generalized poly-Genocchi polynomials with the parameters a, b, and c, Journal of Mathematical Analysis 8 (2017), 156-163.
  7. Toufik Mansour, Identities for sums of a q-analogue of polylogarithm functions, Letters in Mathematical Physics 87 (2009), 1-18.
  8. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. & Informatics 35 (2017), 113-120. https://doi.org/10.14317/jami.2017.113
  9. Charalambos A. Charalambides, discrete q-distribution, Wiley, 2016