DOI QR코드

DOI QR Code

FINDING EXPLICIT SOLUTIONS FOR LINEAR REGRESSION WITHOUT CORRESPONDENCES BASED ON REARRANGEMENT INEQUALITY

  • MIJIN KIM (Department of Mathematics, Kyungpook National University) ;
  • HYUNGU LEE (Department of Mathematics, Kyungpook National University) ;
  • HAYOUNG CHOI (Department of Mathematics, Kyungpook National University)
  • 투고 : 2023.10.21
  • 심사 : 2024.01.05
  • 발행 : 2024.01.30

초록

A least squares problem without correspondences is expressed as the following optimization: Π∈Pminm, x∈ℝn ║Ax-Πy║, where A ∈ ℝm×n and y ∈ ℝm are given. In general, solving such an optimization problem is highly challenging. In this paper we use the rearrangement inequalities to find the closed form of solutions for certain cases. Moreover, despite the stringent constraints, we successfully tackle the nonlinear least squares problem without correspondences by leveraging rearrangement inequalities.

키워드

과제정보

The authors are deeply grateful to the referee for suggestions that led to significant improvements in the presentation.

참고문헌

  1. A. Abid and J. Zou, Stochastic EM for shuffled linear regression, arXiv preprint arXiv:1804.00681 (2018).
  2. A. Bjorck, Least squares methods, Handbook of numerical analysis 1 (1990), 465-652.
  3. E. Borensztein, J. De Gregorio and J.W. Lee, How does foreign direct investment affect economic growth?, J. Int. Econ. 45 (1998), 115-135. https://doi.org/10.1016/S0022-1996(97)00033-0
  4. P. David, D. Dementhon, R. Duraiswami and H. Samet, Softposit: Simultaneous pose and correspondence determination, Int. J. Comput. Vis. 59 (2004), 259-284. https://doi.org/10.1023/B:VISI.0000025800.10423.1f
  5. C. Flammer, Does corporate social responsibility lead to superior financial performance? A regression discontinuity approach, Manage Sci. 61 (2015), 2549-2568. https://doi.org/10.1287/mnsc.2014.2038
  6. R. Geretschlager and W. Janous, Generalized Rearrangement Inequalities, Am. Math. Mon. 108 (2001), 158-165. https://doi.org/10.1080/00029890.2001.11919737
  7. F.S. Gharehchopogh, T.H. Bonab and S.R. Khaze, A linear regression approach to prediction of stock market trading volume: a case study, Int. J. Supply Chain Manag. 4 (2013), 25.
  8. P.C. Hansen, V. Pereyra and G. Scherer, Least squares data fitting with applications, JHU Press, 2013.
  9. G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge: Cambridge University Press, 1952.
  10. B. Heshmaty and A. Kandel, Fuzzy linear regression and its applications to forecasting in uncertain environment, Fuzzy Sets Syst. 15 (1985), 159-191. https://doi.org/10.1016/0165-0114(85)90044-2
  11. D.J. Hsu, K. Shi and X. Sun, Linear regression without correspondence, Adv. Neural Inf. Process. Syst. 30 (2017).
  12. X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res. 9 (1999), 868-877. https://doi.org/10.1101/gr.9.9.868
  13. M.G. Lagoudakis and R. Parr, Least-squares policy iteration, J. Mach. Learn. Res. 4 (2003), 1107-1149.
  14. P. Meer, D. Mintz, A. Rosenfeld and D.Y. Kim, Robust regression methods for computer vision: A review, Int. J. Comput. Vis. 6 (1991), 59-70. https://doi.org/10.1007/BF00127126
  15. J. Merlo, B. Chaix, H. Ohlsson, A. Beckman, K. Johnell, P. Hjerpe and K. Larsen, A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena, J. Epidemiology Community Health 60 (2006), 290-297.
  16. D.C. Montgomery, E.A. Peck and G.G. Vining, Introduction to Linear Regression Analysis, John Wiley and Sons, 2021.
  17. A. Pananjady, M.J. Wainwright and T.A. Courtade, Linear regression with shuffled data: Statistical and computational limits of permutation recovery, IEEE Trans. Inf. Theory 64 (2017), 3286-3300. https://doi.org/10.1109/TIT.2017.2776217
  18. R.W. Parks, Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated, J. Am. Stat. Assoc. 62 (1967), 500-509. https://doi.org/10.1080/01621459.1967.10482923
  19. L. Peng, X. Song, M.C. Tsakiris, H. Choi, L. Kneip and Y. Shi, Algebraically-initialized expectation maximization for header-free communication, In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5182-5186), IEEE, 2019.
  20. K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proceedings of the IEEE 86 (1998), 2210-2239. https://doi.org/10.1109/5.726788
  21. W.S. Robinson, A method for chronologically ordering archaeological deposits, Am. Antiq. 16.4 (1951), 293-301. https://doi.org/10.2307/276978
  22. C. Rose and I.S. Mian, Signaling with identical tokens: Upper bounds with energy constraints, 2014 IEEE International Symposium on Information Theory, 2014, 1817-1821.
  23. C. Rose, I.S. Mian and R. Song, Timing channels with multiple identical quanta, arXiv preprint arXiv:1208.1070 (2012).
  24. X. Song, H. Choi and Y. Shi, Permuted linear model for header-free communication via symmetric polynomials, 2018 IEEE International Symposium on Information Theory (ISIT) (pp. 661-665), IEEE, 2018.
  25. L. Peng and M.C. Tsakiris, Homomorphic sensing of subspace arrangements, Appl. Comput. Harmon. Anal. 55 (2021), 466-485. https://doi.org/10.1016/j.acha.2021.06.008
  26. M.C. Tsakiris, L. Peng, A. Conca, L. Kneip, Y. Shi and H. Choi, An algebraic-geometric approach for linear regression without correspondences, IEEE Trans. Inf. Theory 66 (2020), 5130-5144. https://doi.org/10.1109/TIT.2020.2977166
  27. J. Unnikrishnan, S. Haghighatshoar and M. Vetterli, Unlabeled sensing with random linear measurements, IEEE Trans. Inf. Theory 64 (2018), 3237-3253. https://doi.org/10.1109/TIT.2018.2809002
  28. V. Vapnik, S. Golowich and A. Smola, Support vector method for function approximation, regression estimation and signal processing, Adv. Neural Inf. Process. Syst. 9 (1996).
  29. D.J. Zimmerman, Regression toward mediocrity in economic stature, Am. Econ. Rev. (1992), 409-429.