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FINDING EXPLICIT SOLUTIONS FOR LINEAR

REGRESSION WITHOUT CORRESPONDENCES BASED
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Abstract. A least squares problem without correspondences is expressed

as the following optimization:

min
Π∈Pm, x∈Rn

∥Ax−Πy∥ ,

where A ∈ Rm×n and y ∈ Rm are given. In general, solving such an

optimization problem is highly challenging. In this paper we use the re-
arrangement inequalities to find the closed form of solutions for certain

cases. Moreover, despite the stringent constraints, we successfully tackle

the nonlinear least squares problem without correspondences by leveraging
rearrangement inequalities.
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1. Introduction

Linear regression is a statistical modeling technique used to understand the re-
lationship between a dependent variable and one or more independent variables.
Linear regression has various applications in diverse fields such as economics,
finance, social sciences, and engineering [8], [29], [3], [5], [18], [15], [14], [28], [20].
It is commonly used for prediction [7] and forecasting [10]. The main objective
of linear regression is to find the best-fitting line that minimizes the overall dif-
ference between the observed data points and the predicted values. The line is
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determined by estimating the coefficients or weights assigned to each indepen-
dent variable, which represent the magnitude and direction of their impact on
the dependent variables. See reference [16] and references therein.

To achieve this, linear regression employs the ordinary least squares problem
which is written as the optimization problem [2]:

min
x∈Rn

∥Ax− y∥ , (1.1)

whereA ∈ Rm×n and y ∈ Rm are given. Additionally, it serves as a fundamental
building block for more complex machine learning algorithms and techniques
[13].

The least squares problem in (1.1) is solved by considering the correspondence
between input and output. However, in many cases output of datasets are
massed up, especailly in the absence of correspondence of output. A least squares
problem without correspondences refers to the method of solving the least squares
problem for given data without any correspondence relationship. Specifically, it
is expressed as

min
Π∈Pm, x∈Rn

∥Ax−Πy∥ . (1.2)

where A ∈ Rm×n and y ∈ Rm are given. Here, Pm is the set of m × m
permutation matrices. The problem in (1.2) is called a linear regression without
correspondences [26], shuffled linear regression [26], or permuted linear model
[24].

The problem (1.2) appears in many different fields. For example, it can
be used in simultaneous pose-and-correspondence determination [4], signaling
with identical tokens [22], relative dating from archaeological samples [21], pose-
correspondence estimation cell tracking [23], genome-assembly [12], header-free
communication [19], e.g., for data de-anonymization and low-latency communi-
cations in Internet-Of-Things networks [24]. Literature reviews on this topic can
be found in [17], [27].

The main focus of previous research has been on developing a theoretical un-
derstanding of the conditions necessary for the unique recovery of x or Π. [27]
showed that if A ∈ Rm×n in (1.2) is randomly drawn from any continuous prob-
ability distribution, then an optimal solution x can be uniquely recovered with
probability of 1, provided that m ≥ 2n. However, finding an optimal solution
involves the verification of whether the linear system Πy = Ax remains consis-
tent for every permutation Π. This verification process leads to a computational
complexity of O((m)!mn2). The algorithm in [11] can efficiently reduce compu-
tational complexity in situations where the measured values are noiseless. The
prevailing approach for practical deployment appears to be the one that solves
(1.2) through alternating minimization [1]. In this method, an estimate for x
is computed based on a given estimation for Π through sorting, and vice versa.
However, this approach generally works effectively only when data is partially
shuffled. If we consider a more general scenario where the signal is unrestricted,
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it has been demonstrated that having m ≥ n + 1 measurements is adequate
[26]. These findings were subsequently extended to encompass various linear
transformations, going beyond permutations and down-sampling techniques, as
discussed in [25].

However, to the best of our knowledge, there have not been studied to find
an exact solution. In this paper, we use the rearrangement inequalities to find
an exact solution for a least squares problem without correspondences.

2. Main results

Denote the set of real numbers as R and the set of nonnegative real numbers
as R+ and the set of positive real numbers as R++. We let Pm denote the set
of permutations on {1, . . . ,m} as well as the corresponding set of permutation
matrices. For a given vector v ∈ Rm, we denote the vector with entries of v
sorted in non-decreasing (resp. non-increasing) order as v↑ (resp. v↓). The
usual inner product is denoted by ⟨·, ·⟩.

We first give an interesting result which is a vital tool in this paper. The
rearrangement inequality was introduced by Hardy, Littlewood, Polya as follows
[9].

Lemma 2.1 (Rearrangement inequality). For any vectors u,v ∈ Rm,

⟨u↑,v↓⟩ ≤ ⟨u,v⟩ ≤ ⟨u↑,v↑⟩.

Using the rearrangement inequality, we solve the least squares problem with-
out correspondences. The first result is obtained for the simplest setting.

Theorem 2.2. Let A ∈ Rm×1 with A = A↑ and y ∈ Rm be given. Then an
optimal solution of

min
Π∈Pm, x∈R

∥Ax−Πy∥ (2.1)

is explicitly written as follows:

(i) if ⟨A↑,y↑⟩2 ≥ ⟨A↑,y↓⟩2, then (Π, x) =
(
Π̃, ⟨A,Π̃y⟩

∥A∥2

)
such that Π̃y = y↑.

In such case, the minimum value is ∥y∥ sin θ+,
(ii) if ⟨A↑,y↑⟩2 ≤ ⟨A↑,y↓⟩2, then (Π, x) =

(
Π̃, ⟨A,Π̃y⟩

∥A∥2

)
such that Π̃y = y↓.

In such case, the minimum value is ∥y∥ sin θ−,
where θ+ is the angle between A↑ and y↑ and θ− is the angle between A↑ and
y↓.

Proof. By Lemma 2.1, it follows that for any Π ∈ Pm

∥Ax−Πy∥2 = ∥A∥2x2 − 2⟨A,Πy⟩x+ ∥y∥2

= ∥A∥2
(
x− 1

∥A∥2
⟨A,Πy⟩

)2

+
1

∥A∥2
(
∥A∥2∥y∥2 − ⟨A,Πy⟩2

)
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≥ 1

∥A∥2
(
∥A∥2∥y∥2 − ⟨A,Πy⟩2

)
≥ 1

∥A∥2
(
∥A∥2∥y∥2 −max

{
⟨A,y↑⟩2, ⟨A,y↓⟩2

})
= ∥y∥2 min

{
sin θ+, sin θ−

}
.

□

Note that since ∥Π̃(Ax−Πy)∥ = ∥Ax−Πy∥ for all Π̃ ∈ Pm, Theorem 2.2
holds for A ̸= A↑.

Example 2.3. Consider

A =


3
2
5
1

 , y =


0
1
−1
1

 . (2.2)

It is easy to check that optimal solutions of

min
Π∈Pm, x∈R

∥Ax−Πy∥ (2.3)

are

(Π, x) =



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , 0.1795

 ,



0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , 0.1795

 .

And the minimum value is 1.3205. Note that although the optimal solution x
for the problem (1.2) is unique, the corresponding permutation matrices may
possibly not be unique.

Corollary 2.4. Let A ∈ Rm×1 and y ∈ Rm be given. Then the following holds:

(i) if ⟨A↑,y↓⟩ ≥ 0, then the optimal solution of (2.1) is (Π, x) = (Π̃, ∥y∥ sin θ+)
such that Π̃y = y↑.

(ii) if ⟨A↑,y↑⟩ ≤ 0, then the optimal solution of (2.1) is (Π, x) = (Π̃, ∥y∥ sin θ−)
such that Π̃y = y↓.

Proof. If 0 ≤ ⟨A↑,y↓⟩ ≤ ⟨A↑,y↑⟩, it holds that ⟨A↑,y↓⟩2 ≤ ⟨A↑,y↑⟩2. Then (i)
can be derived by Theorem 2.2. In a similar way, one can verify (ii) easily. □

Next we consider when a given matrix A is m × 2. Denote m × 1 column
vector whose entries all are 1 as 1.

Corollary 2.5. LetA =

[
a1 a2 · · · am
c c · · · c

]T
∈ Rm×2, where a = [a1 a2 . . . am]T

with a = a↑ and y ∈ Rm be given. Then the optimal solution of

min
Π∈Pm, x∈R2

∥Ax−Πy∥ (2.4)
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is explicitly written as follows:

(i) if ⟨a↑,y↑⟩2 ≥ ⟨a↑,y↓⟩2, then (Π,x) =
(
Π̃, (ATA)−1AT Π̃y

)
such that

Π̃y = y↑.

(ii) if ⟨a↑,y↑⟩2 ≤ ⟨a↑,y↓⟩2, then (Π,x) =
(
Π̃, (ATA)−1AT Π̃y

)
such that

Π̃y = y↓.

Proof. Let x = (x1, x2). Then one can check that for any Π ∈ Pm it holds that

∥Ax−Πy∥2 = ∥x1a+ cx21−Πy∥2

= ∥x1a−Π(y − cx21)∥2.
Note that, for any x1 and x2 ∈ R,

argmin
Π∈Pm

∥ax1 −Π(y − cx21)∥2 = argmin
Π∈Pm

∥ax1 −Πy∥2

since x2 has no effect on the order of y. Thus it is enough to solve the optimiza-
tion problem

min
Π∈Pm, x1∈R

∥ax1 −Πy∥2,

which can be solved by Theorem 2.2.
□

Corollary 2.6. LetA =

[
a1 a2 · · · am
b1 b2 · · · bm

]T
∈ Rm×2, where a = [a1 a2 . . . am]T ,

b = [b1 b2 . . . bm]T with a = a↑, b = b↑ = −b↓ and y ∈ Rm be given. Then
the optimal solution of optimization problem

min
Π∈Pm, x∈R2

∥Ax−Πy∥ (2.5)

is written as (Π,x) =
(
Π̃, (ATA)−1AT Π̃y

)
such that Π̃y = y↑ or y↓.

Proof. Note that

∥Ax−Πy∥2 = ∥(x1a+ x2b)−Πy∥2

Since a = a↑ and b = b↑ = −b↓, x1a + x2b = (x1a + x2b)
↑ or (x1a + x2b)

↓

for all x ∈ R2. Then, by Theorem 2.2, Π = Π̃ such that Π̃y = y↑ or y↓. And

x = (ATA)−1AT Π̃y. □

Consider
min

Π∈Pm, x∈Rm−1
∥Ax−Πy∥, (2.6)

where A ∈ Rm×(m−1), y ∈ Rm×1. By singular value decomposition, there exist
orthogonal matrices U, V such that A = UΣVT . Then it follows that

H : = A(ATA)−1AT − I

= UΣVT (VΣTUTUΣVT )−1VΣUT − I
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= U
(
Σ(ΣTΣ)−1ΣT − I

)
UT

= U


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · −1

UT

= −umuT
m

where um is themth column vector ofU. Using the fact that x = (ATA)−1ATΠy,

∥Ax−Πy∥2 = ∥A(ATA)−1ATΠy −Πy∥2

= ∥(A(ATA)−1AT − I)Πy∥2

= ∥HΠy∥2

= (Πy)T (HTH)Πy

= (Πy)TumuT
mΠy

= ⟨um,Πy⟩2.

If ⟨um,Πy⟩ ≥ 0 (resp, ⟨um,Πy⟩ ≤ 0) for all Π ∈ Pm, then by rearrangement
inequality an optimal solution Π for (2.6) can be found. However, ⟨um,Πy⟩ has
both positive and negative signs for some Π ∈ Pm, it may not possibly be easy
to use rearrangement inequality.

Now we consider nonlinear regression without correspondences. Let f(x;β) :
R → R be a real-valued function where β = (β1, β2, . . . , βn) ∈ Rn is a parameter
of f . Denote x = (x1, x2, . . . , xm) ∈ Rm and denote

f(x;β) := [f(x1;β) f(x2;β) . . . f(xm;β)]T .

A nonlinear least squares problem without correspondences is written as

min
Π∈Pm, β∈Rn

∥f(x;β)−Πy∥2, (2.7)

where x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ Rm are given.

Let I1, I2 be closed bounded intervals and let ϕ : I1×I2 → R be a real-valued
function and let Φ : Im

1 × Im
2 → R be a real-valued function defined by

Φ(u,v) :=

m∑
j=1

ϕ(uj , vj)

where u = (u1, u2, . . . , um) ∈ Im
1 and v = (v1, v2, . . . , vm) ∈ Im

2 .

Theorem 2.7. [6] Let u ∈ Im
1 , v ∈ Im

2 . Assume that the first order partial
derivatives of ϕ exist everywhere, and second order partial derivative ∂2ϕ(x, y)/∂x∂y
exists for all (x, y) ∈ I1 × I2. Then
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(i) if ∂2ϕ(x,y)
∂x∂y ≥ 0 for all (x, y) ∈ I1 × I2, it holds

Φ(u↑,v↓) ≤ Φ(u,v) ≤ Φ(u↑,v↑),

(ii) if ∂2ϕ(x,y)
∂x∂y ≤ 0 for all (x, y) ∈ I1 × I2, it holds

Φ(u↑,v↓) ≥ Φ(u,v) ≥ Φ(u↑,v↑).

For a given vector v = (v1, v2, . . . , vm) denote vmin = min
1≤i≤m

vi and vmax =

max
1≤i≤m

vi. Denote the set of functions with k continuous derivatives as Ck.

Theorem 2.8. Let x,y ∈ Rm be given. Assume that f ∈ C2(a, b) such that
[xmin,xmax] ⊂ (a, b). Then it holds that

(i) if f ′(x;β) ≤ 0 for all a ≤ x ≤ b and β ∈ Rn, then

∥f(x↑;β)− y↓∥ ≤ ∥f(x;β)−Πy∥ ≤ ∥f(x↑;β)− y↑∥,

(ii) if f ′(x;β) ≥ 0 for all a ≤ x ≤ b and β ∈ Rn, then

∥f(x↑;β)− y↑∥ ≤ ∥f(x;β)−Πy∥ ≤ ∥f(x↑;β)− y↓∥.

Proof. Set ϕ(x, y) = |f(x;β)− y|2. If f ′(x;β) ≤ 0 for all x ∈ [xmin,xmax], then
∂2ϕ(x,y)
∂x∂y = −2f ′(x;β) ≥ 0 for all (x, y) ∈ [xmin,xmax]× R.

□

3. Computational results

In the real world, data often comes with noise. However, to facilitate more
straightforward estimation of a parameter, we conducted experiments using
noiseless data. Let (x, y) ∈ R2 be given shuffled data generated by a nonlin-

ear function y = f(x;β) = eβ
2x, where β ∈ R is unknown as follows.

(x, y)
(−0.9495, 0.7754) (−0.3341, 0.5444) (0.2963, 0.9587)
(−0.4089, 1.2089) (−0.0658, 1.0785) (0.6844, 0.8075)
(−0.3973, 1.5734) (0.1180, 1.5496) (0.7082, 0.7697)

Note that f ′(x;β) = β2eβ
2x ≥ 0 for all x ∈ R and β ∈ R. Then by Theorem 2.8

∥f(x↑;β)− y↑∥ ≤ ∥f(x;β)−Πy∥ ≤ ∥f(x↑;β)− y↓∥, (3.1)

Consider a nonlinear least squares problem without correspondences

min
Π∈P9, β∈R

∥f(x;β)−Πy∥, (3.2)
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where x,y ∈ R9 is the vector form of given shuffled data (x, y) ∈ R2. Using
Theorem 3.1, it is easy to find that the optimal solution of the optimization in
(3.2) is β = 0.8 and

Π =



0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0


.

Hence, the nonlinear function can be theoretically found (see FIGURE 1).

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

y

(a) Given shuffled data

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

y

(b) The optimal solution

Figure 1. For given shuffled data with unknown correspon-
dence the nonlinear fitting curve can be found.

Final remark : we have established the closed forms of optimal solutions
in (1.2) for certain cases. However, it is still questionable if there exists an
explicit solution for other cases. When it comes to the nonlinear shuffle regression
problem, our current results heavily rely on strong constraints, such as requiring
the function to be non-increasing or non-decreasing. In order to address the
nonlinear shuffle regression problem in more general circumstances, it appears
necessary to reduce these constraints or propose a new methodology.
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