DOI QR코드

DOI QR Code

Study on the Automatic Hull-form Optimal Design of Container Carriers Using HOTCONTAINER

HOTCONTAINER를 사용한 컨테이너선의 선형 최적 설계에 관한 연구

  • Hee Jong Choi (Naval Architecture & Ocean Engineering, Chonnam National University) ;
  • Hyoun Mo Ku (Naval Architecture & Ocean Engineering, Chonnam National University)
  • 최희종 (전남대학교 조선해양공학과) ;
  • 구현모 (전남대학교 조선해양공학과)
  • Received : 2023.12.12
  • Accepted : 2024.02.23
  • Published : 2024.02.28

Abstract

In this paper, the research contents and results related to the automation of the hull-form optimal design of container ships are summarized. A container ship is a ship that generally operates near Froude number of 0.26. To implement hull-form optimal design automation for ships operating at this speed, an optimization algorithm, a hull-form change algorithm, a ship performance prediction algorithm, an automation algorithm, and an iterative calculation technique were applied to develop a numerical analysis computer program that enables hull-form optimal design automation of the container ship, and it was named HOTCONTAINER. In this study, a sensitivity analysis algorithm was developed and applied to appropriately set design variables for hull-form optimal design. To understand the reliability and real ship applicability of the developed algorithm, a numerical analysis was performed on KCS(KRISO Container Ship), a container ship that has been studied in various ways worldwide. Consequently, the optimal ship was derived, and the wave resistance, wave pattern, and wave height of the target and optimal ship were compared. In conclusion, compared the target ship, the optimal ship a 47.63% decrease in wave resistance, and the displacement and wet surface area decreased by 0.50% and 0.39%, respectively.

본 논문에서는 컨테이너선의 선형 최적 설계 자동화와 관련하여 연구한 내용과 결과를 정리하였다. 컨테이너선은 일반적으로 프루우드 수 0.26 근처에서 운항하는 선박으로 이 속도에서 운항하는 선박 전용 선형 최적 설계 자동화를 구현하기 위하여 최적화 알고리즘, 선형 변경 알고리즘, 선박 성능 예측 알고리즘, 자동화 알고리즘 그리고 반복적 계산 기법을 적용하여 컨테이너선의 선형 최적 설계 자동화가 가능한 수치해석 컴퓨터 프로그램을 개발하였으며, HOTCONTAINER라고 명명하였다. 본 연구에서는 선형 최적 설계를 위한 설계 변수의 적절한 선정을 위하여 민감도 분석 알고리즘을 개발하여 적용하였다. 개발된 선형 최적 설계 자동화 알고리즘의 신뢰성과 실선 적용성을 파악하기 위하여 세계적으로 다양한 연구가 진행된 컨테이너 선박인 KCS 선박을 대상 선박으로 하여 선형 최적 설계 자동화 수치해석을 수행하여 그 결과물로써 최적 선박을 도출하고, 대상 선박과 최적 선박의 조파저항과 파계 그리고 파고를 비교하였다. 결론적으로 최적 선박이 대상 선박과 비교하여 조파저항이 47.63% 감소한 것을 볼 수 있었으며, 배수량과 접수 표면적은 각각 0.50%, 0.39% 감소한 것을 볼 수 있었다.

Keywords

References

  1. Campana, E. F., D. Peri, and Y. Tahara(2006), Shape optimization in ship hydrodynamics using computational fluid dynamics. Computational Methods Applied Mechanics Eng., Vol. 196(1), pp. 634-651. https://doi.org/10.1016/j.cma.2006.06.003
  2. Campana, E. F., G. Liuzzi, S. Lucidi, D. Peri, V. Piccialli, and A. Pinto(2009), New global optimization methods for ship design problems. Optimization Engineering, Vol. 10, pp. 533-555. https://doi.org/10.1007/s11081-009-9085-3
  3. Choi, H. J., H. H. Chun, I. R. Park, and J. Kim(2011), Panel cutting method-new approach to generate panels on a hull in Rankine source potential approximation. International Journal of Naval Architecture and Ocean Engineering, Vol. 3, No. 4, pp. 225-292. https://doi.org/10.2478/IJNAOE-2013-0066
  4. Choi, H. J.(2013), A Study for Wave-making Resistance Performance Prediction Method of a High-Speed Planing Ship. Journal of Korean Society of Mechanical Technology, Vol. 15(1), pp. 75-81. https://doi.org/10.17958/ksmt.15.1.201302.75
  5. Choi, H. J.(2015), Hull-form optimization of a container ship based on bell-shaped modification function. International Journal of Naval Architecture & Ocean Engineering, Vol. 7, No. 3, pp. 478-489. https://doi.org/10.1515/ijnaoe-2015-0034
  6. Choi, H. J.(2016), Research on hull-form optimization of a passenger ship using hull-form modification function algorithm with Gaussian distribution function. Brodograndnja/Shipbuilding, Vol. 67, No. 3, pp. 1-15. https://doi.org/10.21278/brod67301
  7. Choi, H. J.(2020), A Study on Hull-form Design of a Passsenger Ship According to the Location Change of Section Lines. Journal of Korean Society of Mechanical Technology, Vol. 22, No. 1, pp. 152-158. https://doi.org/10.17958/ksmt.22.1.202002.152
  8. Choi, H. J.(2021), A Study on the Automatic Hull-form Optimal Design of a Coastal Fishing Vessel using HOTBOAT. Journal of Korean Society of Mechanical Technology, Vol. 23, No. 1, pp. 31-37.
  9. Maisonneuve, J. J., S. Harries, J. Marzi, H. C. Raven, U. Viviani, and H. Piippo(2003), Toward optimal design of ship hull shapes. In: 8th international marine design conference, IMDC03, Athens.
  10. Min, K. S., Y. S. Lee, B. W. Han, and S. H. Kang(2004), Hull form optimization for fine higher-speed ships. In: 25th symposium on naval hydrodynamics, St. John's, Newfoundland and Labrador, Canada, August 8-13.
  11. Park, D. W. and H. J. Choi(2012), Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance, Journal of Navigation and Port Research, Vol. 36, No. 10, pp. 787-793. https://doi.org/10.5394/KINPR.2012.36.10.787
  12. Peri, D. and E. F. Campana(2005), High-fidelity models and multi-objective global optimization algorithms in simulation-based design. Journal of Ship Research, Vol. 49, pp. 159-175. https://doi.org/10.5957/jsr.2005.49.3.159
  13. Saha, G. K., K. Suzuki, and H. Kai(2005), Hydrodynamic optimization of a catamaran hull with large bow and stern bulbs installed on the center plane of the catamaran. Journal of Marine Science Technology, Vol. 10, pp. 32-40. https://doi.org/10.1007/s00773-004-0186-6
  14. SIMMAN(2014), https://simman2014.dk/ship-data/moeri-container-ship/.
  15. Stern, F., R. V. Wilson, and H. W. Coleman(2001), Comprehensive approach to verification and validation of CFD simulations - part 1: methodology and procedures. Journal of Fluid Engineering, Vol. 123, pp. 793-802. https://doi.org/10.1115/1.1412235
  16. Tahara, Y., F. Stern, and Y. Himeno(2004), CFD-based optimization of a surface combatant. Journal of Ship Research, Vol. 28, pp. 159-175.