Acknowledgement
This research was funded by the Natural Science Foundation of Fujian, grant number 2021J05262; Science and Technology Support Plan of Fujian, grant number 2022T3061; High-level Talent Program of Xiamen University of Technology, grant number YKJ20015R; and The Education Research Project for Mid-career Teachers of Fujian Provincial Education Department, grant number JAT200462.
References
- Zhang, M., Tan, L.L., Li, J.C., Huang, X.L.: The charging control and efficiency optimization strategy for WPT system based on secondary side controllable rectifier. IEEE Access 8, 127993-128004 (2020) https://doi.org/10.1109/ACCESS.2020.3007444
- Kim, J., Marin, G., Seo, J.-M., Neviani, A.: A 13.56 MHz reconfigurable step-up switched capacitor converter for wireless power transfer system in implantable medical devices. Analog Integr. Circuits Signal Process. 110, 517-525 (2022) https://doi.org/10.1007/s10470-022-01990-8
- Liu, H., Jiang, C.Q., Song, J., Chau, K.T.: An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker. IEEE Trans. Ind. Electron. 66, 4108-4117 (2019) https://doi.org/10.1109/TIE.2018.2840522
- Zhang, K., Zhang, X., Zhu, Z., Yan, Z., Song, B., Mi, C.C.: A new coil structure to reduce eddy current loss of WPT systems for underwater vehicles. IEEE Trans. Veh. Technol. 68, 245-253 (2019) https://doi.org/10.1109/TVT.2018.2883473
- Yan, Z., Zhang, Y., Kan, T., Lu, F., Zhang, K., Song, B., Mi, C.C.: Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. IEEE Trans. Ind. Electron. 66, 3468-3476 (2019) https://doi.org/10.1109/TIE.2018.2851947
- Hui, S.Y.: Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 101, 1290-1301 (2013) https://doi.org/10.1109/JPROC.2013.2246531
- Huang, Z.C., Wong, S.C., Tse, C.K.: Design of a single-stage inductive-power-transfer converter for efficient EV battery charging. IEEE Trans. Veh. Technol. 66, 5808-5821 (2017) https://doi.org/10.1109/TVT.2016.2631596
- Liu, H., Tan, L., Huang, X., Guo, J., Yan, C., Wang, W.: A topological transformation and hierarchical compensation capacitor control in segmented on-road charging system for electrical vehicles. J. Power Electron. 16, 1621-1628 (2016) https://doi.org/10.6113/JPE.2016.16.4.1621
- Yun, S.S., Kee, S.-C.: Improved multilevel multistage constant-current constant-voltage superfast charging of multiple cells. J. Electr. Eng. Technol. 17, 209-219 (2021)
- Qu, X.H., Han, H.D., Wong, S.C., Tse, C.K., Chen, W.: Hybrid IPT topologies with constant current or constant voltage output for battery charging applications. IEEE Trans. Power Electron. 30, 6329-6337 (2015) https://doi.org/10.1109/TPEL.2015.2396471
- Ji, L., Wang, C.L., Li, S.: Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power tranfer systems LCL. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 33, 34-40 (2018)
- Gu, Y., Ju, D., Wang, L., Ren, J., Chang, C.: PSR CC/CV AC-DC converter with an adaptive high-precision closed-loop constant current control scheme. J. Power Electron. 21, 965-973 (2021) https://doi.org/10.1007/s43236-021-00250-8
- Sohn, Y.H., Choi, B.H., Lee, E.S., Lim, G.C., Cho, G.H., Rim, C.T.: General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations. IEEE Trans. Power Electron. 30, 6030-6045 (2015) https://doi.org/10.1109/TPEL.2015.2409734
- Khaligh, Dusmez, S.: Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans. Veh. Technol. 61, 3475-3489 (2012) https://doi.org/10.1109/TVT.2012.2213104
- Wang, S., Covic, G.A., Stielau, O.H.: Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 51, 148-157 (2004) https://doi.org/10.1109/TIE.2003.822038
- Wang, X., Xu, J., Mao, M., Ma, H.: An LCL-based SS compensated WPT converter with Wide ZVS Range and Integrated Coil Structure. IEEE Trans. Ind. Electron. 68, 4882-4893 (2021) https://doi.org/10.1109/TIE.2020.2989707
- Wu, H.H., Gilchrist, A., Sealy, K.D., Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind Inform. 8, 585-595 (2012) https://doi.org/10.1109/TII.2012.2192283
- Li, H., Li, J., Wang, K., Chen, W., Yang, X.: A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 30, 3998-4008 (2015)
- Vu, V.B., Tran, D.H., Choi, W.: Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications. IEEE Trans. Power Electron. 33, 7398-7410 (2018) https://doi.org/10.1109/TPEL.2017.2766605
- Li, Q., Mi, C.C.: Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3, 4-17 (2015) https://doi.org/10.1109/JESTPE.2014.2319453
- Wang, S., Stielau, O.H., Covic, G.A.: Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 52, 1308-1314 (2005) https://doi.org/10.1109/TIE.2005.855672
- Ahn, S., Kim, J.M., Cho, I.-K.: Wireless power transfer with automatic feedback control of load resistance transformation. IEEE Trans. Power Electron. 31, 7876-7886 (2016) https://doi.org/10.1109/TPEL.2015.2513060
- Jo, S., Shin, C.S., Kim, D.-H.: Novel design method in wireless charger for SS topology with current/voltage self-limitation function. Appl. Sci. 13, 1488 (2023)
- Wang, S., Covic, G.A., Stielau, O.H.: Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Trans. Power Electron. 19, 995-1002 (2004) https://doi.org/10.1109/TPEL.2004.830098
- Yao, Y., Liu, X., Wang, Y., Xu, D.: Modified parameter tuning method for LCL/P compensation topology featured with load independent and LCT unconstrained output current. IET Power Electron. 11, 1483-1491 (2018) https://doi.org/10.1049/iet-pel.2018.0049
- Keeling, N.A., Covic, G.A., Boys, J.T.: A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron. 57, 744-751 (2010) https://doi.org/10.1109/TIE.2009.2027255
- Pantic, Z., Bai, S., Lukic, S.M.: ZCS LCC-compensated resonant inverter for inductive-power-transfer application. IEEE Trans. Ind. Electron. 58, 3500-3510 (2011) https://doi.org/10.1109/TIE.2010.2081954
- Li, S.Q., Li, W.H., Deng, J.J., Nguyen, T.D., Mi, C.C.: A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technol. 64, 2261-2273 (2015) https://doi.org/10.1109/TVT.2014.2347006
- Tan, L.L., Pan, S.L., Xu, C.F., Yan, C.X., Liu, H., Huang, X.L.: Study of constant current-constant voltage output wireless charging system based on compound topologies. J. Power Electron. 17, 1109-1116 (2017)
- Li, Y., Hu, J., Chen, F., Liu, S., Yan, Z., He, Z.: A new-variable-coil-structure-based IPT system with load-independent constant output current or voltage for charging electric bicycles. IEEE Trans. Power Electron. 33, 8226-8230 (2018) https://doi.org/10.1109/TPEL.2018.2812716
- Zhang, W., Wong, S.C., Tse, C.K., Chen, Q.H.: Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems. IEEE Trans. Power Electron. 29, 191-200 (2014) https://doi.org/10.1109/TPEL.2013.2249112
- Kissin, M.L.G., Boys, J.T., Covic, G.A.: Interphase mutual inductance in polyphase inductive power transfer systems. IEEE Trans. Ind. Electron. 56, 2393-2400 (2009) https://doi.org/10.1109/TIE.2009.2020076
- Lu, J., Zhu, G., Lin, D., Zhang, Y., Wang, H., Mi, C.C.: Realizing constant current and constant voltage outputs and input zero phase angle of wireless power transfer systems with minimum component counts. IEEE Trans. Intell. Transp. Syst. 22, 600-610 (2021) https://doi.org/10.1109/TITS.2020.2985658
- Yang, L., Geng, Z., Jiang, S., Wang, C.: Analysis and design of an S/PS-compensated WPT system with constant current and constant voltage charging. Electronics 11, 1488 (2022)
- Wang, W., Deng, J., Chen, D., Wang, Z., Wang, S.: A novel design method of LCC-S compensated inductive power transfer system combining constant current and constant voltage mode via frequency switching. IEEE Access 9, 117244-117256 (2021) https://doi.org/10.1109/ACCESS.2021.3105103
- Byun, J., Kim, M., Joo, D., Lee, W.Y., Choe, G.Y., Lee, B.K.: Frequency and phase-shift control of inductive power transfer for EV charger with LCCL-S resonant network considering misalignment. J. Electr. Eng. Technol. 14, 2409-2419 (2019) https://doi.org/10.1007/s42835-019-00297-5
- Tran, H., Vu, V.B., Choi, W.: Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Trans. Power Electron. 33, 175-187 (2018) https://doi.org/10.1109/TPEL.2017.2662067
- Yang, L., Li, X., Liu, S., Xu, Z., Cai, C.: Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications. IEEE J. Emerg. Sel. Top. Power Electron. 9, 1169-1180 (2021) https://doi.org/10.1109/JESTPE.2020.2971583
- Li, G., Kim, D.-H.: A wireless power transfer charger with hybrid compensation topology for constant current/voltage onboard charging. Appl. Sci. 11, 7569 (2021)
- Wang, Y., Yao, Y., Liu, X., Xu, D., Cai, L.: An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33, 2007-2025 (2018) https://doi.org/10.1109/TPEL.2017.2698002
- Budhia, M., Covic, G.A., Boys, J.T.: Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26, 3096-3108 (2011) https://doi.org/10.1109/TPEL.2011.2143730
- Yenil, V., Cetin, S.: Load independent constant current and constant voltage control of LCC-series compensated wireless EV charger. IEEE Trans. Power Electron. 37, 8701-8712 (2022) https://doi.org/10.1109/TPEL.2022.3144160