DOI QR코드

DOI QR Code

Constant current/voltage characteristics inductive power transfer system with variable static S-T/FC compensation

  • Jianfeng Hong (School of Mechanical and Automotive Engineering, Xiamen University of Technology) ;
  • Fei Pan (School of Mechanical and Automotive Engineering, Xiamen University of Technology) ;
  • Ziheng Zhang (School of Mechanical and Automotive Engineering, Xiamen University of Technology) ;
  • Jia Teng (School of Mechanical and Automotive Engineering, Xiamen University of Technology) ;
  • Dekai He (School of Mechanical and Automotive Engineering, Xiamen University of Technology)
  • Received : 2023.06.23
  • Accepted : 2023.11.20
  • Published : 2024.03.20

Abstract

Continuous mode changes during battery charging present a significant challenge for the application of inductive power transfer (IPT) in battery charging. Achieving constant-current (CC) and constant-voltage (CV) charging characteristics is crucial for its successful implementation. This paper proposes a variable static S-T/FC compensation topology based on switching state changes. It offers the advantages of being able to handle various load conditions, facilitating soft switching of the inverter throughout the operation process, and achieving CC and CV charging without changing the operating frequency of the system. The characteristics of the proposed topology were confirmed through a theoretical analysis. Additionally, a completely new parameter design method is proposed. The CC and CV characteristics of the proposed topology are verified through theoretical derivation and simulation analysis. Finally, a validation prototype is constructed to assess the feasibility and rationality of the proposed method, achieving a 3.5 A output current in the CC mode and a 70 V output voltage in the CV mode.

Keywords

Acknowledgement

This research was funded by the Natural Science Foundation of Fujian, grant number 2021J05262; Science and Technology Support Plan of Fujian, grant number 2022T3061; High-level Talent Program of Xiamen University of Technology, grant number YKJ20015R; and The Education Research Project for Mid-career Teachers of Fujian Provincial Education Department, grant number JAT200462.

References

  1. Zhang, M., Tan, L.L., Li, J.C., Huang, X.L.: The charging control and efficiency optimization strategy for WPT system based on secondary side controllable rectifier. IEEE Access 8, 127993-128004 (2020) https://doi.org/10.1109/ACCESS.2020.3007444
  2. Kim, J., Marin, G., Seo, J.-M., Neviani, A.: A 13.56 MHz reconfigurable step-up switched capacitor converter for wireless power transfer system in implantable medical devices. Analog Integr. Circuits Signal Process. 110, 517-525 (2022) https://doi.org/10.1007/s10470-022-01990-8
  3. Liu, H., Jiang, C.Q., Song, J., Chau, K.T.: An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker. IEEE Trans. Ind. Electron. 66, 4108-4117 (2019) https://doi.org/10.1109/TIE.2018.2840522
  4. Zhang, K., Zhang, X., Zhu, Z., Yan, Z., Song, B., Mi, C.C.: A new coil structure to reduce eddy current loss of WPT systems for underwater vehicles. IEEE Trans. Veh. Technol. 68, 245-253 (2019) https://doi.org/10.1109/TVT.2018.2883473
  5. Yan, Z., Zhang, Y., Kan, T., Lu, F., Zhang, K., Song, B., Mi, C.C.: Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. IEEE Trans. Ind. Electron. 66, 3468-3476 (2019) https://doi.org/10.1109/TIE.2018.2851947
  6. Hui, S.Y.: Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 101, 1290-1301 (2013) https://doi.org/10.1109/JPROC.2013.2246531
  7. Huang, Z.C., Wong, S.C., Tse, C.K.: Design of a single-stage inductive-power-transfer converter for efficient EV battery charging. IEEE Trans. Veh. Technol. 66, 5808-5821 (2017) https://doi.org/10.1109/TVT.2016.2631596
  8. Liu, H., Tan, L., Huang, X., Guo, J., Yan, C., Wang, W.: A topological transformation and hierarchical compensation capacitor control in segmented on-road charging system for electrical vehicles. J. Power Electron. 16, 1621-1628 (2016) https://doi.org/10.6113/JPE.2016.16.4.1621
  9. Yun, S.S., Kee, S.-C.: Improved multilevel multistage constant-current constant-voltage superfast charging of multiple cells. J. Electr. Eng. Technol. 17, 209-219 (2021)
  10. Qu, X.H., Han, H.D., Wong, S.C., Tse, C.K., Chen, W.: Hybrid IPT topologies with constant current or constant voltage output for battery charging applications. IEEE Trans. Power Electron. 30, 6329-6337 (2015) https://doi.org/10.1109/TPEL.2015.2396471
  11. Ji, L., Wang, C.L., Li, S.: Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power tranfer systems LCL. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 33, 34-40 (2018)
  12. Gu, Y., Ju, D., Wang, L., Ren, J., Chang, C.: PSR CC/CV AC-DC converter with an adaptive high-precision closed-loop constant current control scheme. J. Power Electron. 21, 965-973 (2021) https://doi.org/10.1007/s43236-021-00250-8
  13. Sohn, Y.H., Choi, B.H., Lee, E.S., Lim, G.C., Cho, G.H., Rim, C.T.: General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations. IEEE Trans. Power Electron. 30, 6030-6045 (2015) https://doi.org/10.1109/TPEL.2015.2409734
  14. Khaligh, Dusmez, S.: Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans. Veh. Technol. 61, 3475-3489 (2012) https://doi.org/10.1109/TVT.2012.2213104
  15. Wang, S., Covic, G.A., Stielau, O.H.: Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 51, 148-157 (2004) https://doi.org/10.1109/TIE.2003.822038
  16. Wang, X., Xu, J., Mao, M., Ma, H.: An LCL-based SS compensated WPT converter with Wide ZVS Range and Integrated Coil Structure. IEEE Trans. Ind. Electron. 68, 4882-4893 (2021) https://doi.org/10.1109/TIE.2020.2989707
  17. Wu, H.H., Gilchrist, A., Sealy, K.D., Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind Inform. 8, 585-595 (2012) https://doi.org/10.1109/TII.2012.2192283
  18. Li, H., Li, J., Wang, K., Chen, W., Yang, X.: A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 30, 3998-4008 (2015)
  19. Vu, V.B., Tran, D.H., Choi, W.: Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications. IEEE Trans. Power Electron. 33, 7398-7410 (2018) https://doi.org/10.1109/TPEL.2017.2766605
  20. Li, Q., Mi, C.C.: Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3, 4-17 (2015) https://doi.org/10.1109/JESTPE.2014.2319453
  21. Wang, S., Stielau, O.H., Covic, G.A.: Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 52, 1308-1314 (2005) https://doi.org/10.1109/TIE.2005.855672
  22. Ahn, S., Kim, J.M., Cho, I.-K.: Wireless power transfer with automatic feedback control of load resistance transformation. IEEE Trans. Power Electron. 31, 7876-7886 (2016) https://doi.org/10.1109/TPEL.2015.2513060
  23. Jo, S., Shin, C.S., Kim, D.-H.: Novel design method in wireless charger for SS topology with current/voltage self-limitation function. Appl. Sci. 13, 1488 (2023)
  24. Wang, S., Covic, G.A., Stielau, O.H.: Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Trans. Power Electron. 19, 995-1002 (2004) https://doi.org/10.1109/TPEL.2004.830098
  25. Yao, Y., Liu, X., Wang, Y., Xu, D.: Modified parameter tuning method for LCL/P compensation topology featured with load independent and LCT unconstrained output current. IET Power Electron. 11, 1483-1491 (2018) https://doi.org/10.1049/iet-pel.2018.0049
  26. Keeling, N.A., Covic, G.A., Boys, J.T.: A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron. 57, 744-751 (2010) https://doi.org/10.1109/TIE.2009.2027255
  27. Pantic, Z., Bai, S., Lukic, S.M.: ZCS LCC-compensated resonant inverter for inductive-power-transfer application. IEEE Trans. Ind. Electron. 58, 3500-3510 (2011) https://doi.org/10.1109/TIE.2010.2081954
  28. Li, S.Q., Li, W.H., Deng, J.J., Nguyen, T.D., Mi, C.C.: A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technol. 64, 2261-2273 (2015) https://doi.org/10.1109/TVT.2014.2347006
  29. Tan, L.L., Pan, S.L., Xu, C.F., Yan, C.X., Liu, H., Huang, X.L.: Study of constant current-constant voltage output wireless charging system based on compound topologies. J. Power Electron. 17, 1109-1116 (2017)
  30. Li, Y., Hu, J., Chen, F., Liu, S., Yan, Z., He, Z.: A new-variable-coil-structure-based IPT system with load-independent constant output current or voltage for charging electric bicycles. IEEE Trans. Power Electron. 33, 8226-8230 (2018) https://doi.org/10.1109/TPEL.2018.2812716
  31. Zhang, W., Wong, S.C., Tse, C.K., Chen, Q.H.: Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems. IEEE Trans. Power Electron. 29, 191-200 (2014) https://doi.org/10.1109/TPEL.2013.2249112
  32. Kissin, M.L.G., Boys, J.T., Covic, G.A.: Interphase mutual inductance in polyphase inductive power transfer systems. IEEE Trans. Ind. Electron. 56, 2393-2400 (2009) https://doi.org/10.1109/TIE.2009.2020076
  33. Lu, J., Zhu, G., Lin, D., Zhang, Y., Wang, H., Mi, C.C.: Realizing constant current and constant voltage outputs and input zero phase angle of wireless power transfer systems with minimum component counts. IEEE Trans. Intell. Transp. Syst. 22, 600-610 (2021) https://doi.org/10.1109/TITS.2020.2985658
  34. Yang, L., Geng, Z., Jiang, S., Wang, C.: Analysis and design of an S/PS-compensated WPT system with constant current and constant voltage charging. Electronics 11, 1488 (2022)
  35. Wang, W., Deng, J., Chen, D., Wang, Z., Wang, S.: A novel design method of LCC-S compensated inductive power transfer system combining constant current and constant voltage mode via frequency switching. IEEE Access 9, 117244-117256 (2021) https://doi.org/10.1109/ACCESS.2021.3105103
  36. Byun, J., Kim, M., Joo, D., Lee, W.Y., Choe, G.Y., Lee, B.K.: Frequency and phase-shift control of inductive power transfer for EV charger with LCCL-S resonant network considering misalignment. J. Electr. Eng. Technol. 14, 2409-2419 (2019) https://doi.org/10.1007/s42835-019-00297-5
  37. Tran, H., Vu, V.B., Choi, W.: Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Trans. Power Electron. 33, 175-187 (2018) https://doi.org/10.1109/TPEL.2017.2662067
  38. Yang, L., Li, X., Liu, S., Xu, Z., Cai, C.: Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications. IEEE J. Emerg. Sel. Top. Power Electron. 9, 1169-1180 (2021) https://doi.org/10.1109/JESTPE.2020.2971583
  39. Li, G., Kim, D.-H.: A wireless power transfer charger with hybrid compensation topology for constant current/voltage onboard charging. Appl. Sci. 11, 7569 (2021)
  40. Wang, Y., Yao, Y., Liu, X., Xu, D., Cai, L.: An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33, 2007-2025 (2018) https://doi.org/10.1109/TPEL.2017.2698002
  41. Budhia, M., Covic, G.A., Boys, J.T.: Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26, 3096-3108 (2011) https://doi.org/10.1109/TPEL.2011.2143730
  42. Yenil, V., Cetin, S.: Load independent constant current and constant voltage control of LCC-series compensated wireless EV charger. IEEE Trans. Power Electron. 37, 8701-8712 (2022) https://doi.org/10.1109/TPEL.2022.3144160