• Title/Summary/Keyword: Variable static

Search Result 416, Processing Time 0.027 seconds

A new Dynamic Switching Function for Output feedback Variable Structure Control (출력궤환가변구조제어를 위한 동적스위칭함수의 제안과 응용)

  • 이기상;송명현;조상호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.706-717
    • /
    • 1991
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control systems,a new switching function with a dynamic structure is proposed. And the control performances of the output feedback variable structure control systems with the dynamic switching function are evaluated through simulation studies. The proposed dynamic switching function is driven by small number of measured output and input variables while conventional static switching function requires full state information. Therefore, the proposition of the dynamic swiching function makes practical implementation of output feedback variable structure control scheme possible for the systems with unmeasurable state variables, high order systems and large scale systems that the conventional variable structure control schemes with static switching function cannot be applied. In the variable structure control systems with the dynamic switching function, desired control performance can be guaranteed by proper choice of design parameters such as poles of switching function dynamic equation and switching control gains even though small number of measured output and input variables are provided as shown in simulation resuls.

  • PDF

Dynamic Decisions using Variable Neighborhood Search for Stochastic Resource-Constrained Project Scheduling Problem (확률적 자원제약 스케줄링 문제 해결을 위한 가변 이웃탐색 기반 동적 의사결정)

  • Yim, Dong Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Stochastic resource-constrained project scheduling problem is an extension of resource-constrained project scheduling problem such that activity duration has stochastic nature. In real situation where activity duration is not known until the activity is finished, open-loop based static policies such as activity-based policy and priority-based policy will not well cope with duration variability. Then, a dynamic policy based on closed-loop decision making will be regarded as an alternative toward achievement of minimal makespan. In this study, a dynamic policy designed to select activities to start at each decision time point is illustrated. The performance of static and dynamic policies based on variable neighborhood search is evaluated under the discrete-event simulation environment. Experiments with J120 sets in PSPLIB and several probability distributions of activity duration show that the dynamic policy is superior to static policies. Even when the variability is high, the dynamic policy provides stable and good solutions.

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

Control and Implementation of Dual-Stator-Winding Induction Generator for Variable Frequency AC-Generating System

  • Bu, Feifei;Hu, Yuwen;Huang, Wenxin;Shi, Kai
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.798-805
    • /
    • 2013
  • This paper presents the control and implementation of the dual-stator-winding induction generator for variable frequency AC (VFAC) generating system. This generator has two sets of stator windings embedded into the stator slots. The power winding produces the VFAC power to feed the loads, and the control winding is connected to the static excitation controller to control the generator for output voltage regulation with speed and load variations. On the basis of the idea of power balance, an instantaneous slip frequency control (ISFC) strategy using the information of both the output voltage and the output power is used in this system. A series of experiments is carried out on a 15 kW prototype for verification. Results show that the system has good static and dynamic performance in a wide speed range, which demonstrates that the ISFC strategy is suitable for this system.

Application of Variable Neighborhood Search Algorithms to a Static Repositioning Problem in Public Bike-Sharing Systems (공공 자전거 정적 재배치에의 VNS 알고리즘 적용)

  • Yim, Dong-Soon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.1
    • /
    • pp.41-53
    • /
    • 2016
  • Static repositioning is a well-known and commonly used strategy to maximize customer satisfaction in public bike-sharing systems. Repositioning is performed by trucks at night when no customers are in the system. In models that represent the static repositioning problem, the decision variables are truck routes and the number of bikes to pick up and deliver at each rental station. To simplify the problem, the decision on the number of bikes to pick up and deliver is implicitly included in the truck routes. Two relocation-based local search algorithms (1-relocate and 2-relocate) with the best-accept strategy are incorporated into a variable neighborhood search (VNS) to obtain high-quality solutions for the problem. The performances of the VNS algorithm with the effect of local search algorithms and shaking strength are evaluated with data on Tashu public bike-sharing system operating in Daejeon, Korea. Experiments show that VNS based on the sequential execution of two local search algorithms generates good, reliable solutions.

A Compensation Technique of the Linearity Error of Linear Variable Differential Transformer (선형변이 차동변압기 센서의 직선성오차 보정기법)

  • Choi, Ju-Ho;Hwang, Eui-Seong;Hong, Sung-Soo;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2000
  • This paper presents the characteristics of the dynamic response and calibration technique on a linear variable differential transformer(LVDT). The linear error of the LVDT was proven $\pm$1% in the static calibration and $\pm$0.5% in the dynamic calibration. In this paper, the linearity error generated in the static and dynamic state of the core movement can be eliminated using the correction algorithem of the static and dynamic state derived from the least square linear approximation for the nonlinearity of the curves of direct data fitting and Lagrange polynomials. With the static and dynamic calibration method, the calibration accuracy of the LVDT can be reduced to within $\pm{0.5%.}$.

  • PDF

Static Type Assignment for SSA Form in CTOC

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, it also has certain shortcomings such as its slow execution speed and difficulty of analysis. In order to overcome such disadvantages, a bytecode analysis and optimization must be performed. The control flow of the bytecode should be analyzed; next, information is required regarding where the variables are defined and used to conduct a dataflow analysis and optimization. There may be cases where variables with an identical name contain different values at different locations during execution, according to the value assigned to a given variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to achieve this, variables can be expressed using a static single assignment form. After transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform a static analysis and optimization. Based on the basic type information, this paper proposes a method for finding the related equivalent nodes, setting nodes with strong connection components, and efficiently assigning each node type.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part I : Analytical Study

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.17-26
    • /
    • 2003
  • In this paper, the comparative steady-state operating performance analysis algorithms of the stand-alone single-phase self-excited induction generator (SEIG) is presented on the basis of the two nodal admittance approaches using the per-unit frequency in addition to a new state variable de-fined by the per-unit slip frequency. The main significant features of the proposed operating circuit analysis with the per-unit slip frequency as a state variable are that the fast effective solution could be achieved with the simple mathematical computation effort. The operating performance results in the simulation of the single-phase SEIG evaluated by using the per-unit slip frequency state variable are compared with those obtained by using the per-unit frequency state variable. The comparative operating performance results provide the close agreements between two steady-state analysis performance algorithms based on the electro-mechanical equivalent circuit of the single-phase SEIG. In addition to these, the single-phase static VAR compensator; SVC composed of the thyristor controlled reactor; TCR in parallel with the fixed excitation capacitor; FC and the thyristor switched capacitor; TSC is ap-plied to regulate the generated terminal voltage of the single-phase SEIG loaded by a variable inductive passive load. The fixed gain PI controller is employed to adjust the equivalent variable excitation capacitor capacitance of the single-phase SVC.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation -Part I : Theoretical Performance Analysis-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This paper deals with the nodal admittance approach steady-state frequency domain analysis of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover as the wind turbine. The steady-state performance analysis of this power conditioner designed for the renewable energy is based on the principle of equating the input mechanical power of the three-phase SEIG to the output mechanical power of the variable speed prime mover mentioned above. Us-ing the approximate frequency domain based equivalent circuit of the three-phase SEIG. The main features of the present algorithm of the steady-state performance analysis of the three-phase SEIG treated here are that the variable speed prime mover characteristics are included in the approximate equivalent circuit of the three-phase SEIG under the condition of the speed changes of the prime mover without complex computations processes. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by variable speed prime movers such as the wind turbine(WT) employing the static VAR compensator(SVC) circuit composed of the thyristor phase controlled reactor(TCR) and the thyristor switched capacitor(TSC) controlled by the PI controller is designed and considered for wind-turbine driving power conditioner.