DOI QR코드

DOI QR Code

Physical and Mechanical Properties of Light Red Meranti Treated with Boron Preservatives

  • Man Djun LEE (Centre of Mechanical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Ridge Wei Cheong TANG (Mechanical Engineering Department, Faculty of Engineering and Science, Curtin University Malaysia) ;
  • Zeno MICHAEL (Centre of Mechanical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Miqdad KHAIRULMAINI (Centre of Mechanical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Azmi ROSLAN (Centre of Chemical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Ahmad Faidzal KHODORI (Centre of Mechanical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Hazim SHARUDIN (Centre of Mechanical Engineering, Universiti Teknologi Mara (UiTM) Cawangan Johor Kampus Pasir Gudang) ;
  • Pui San LEE (Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah)
  • Received : 2023.11.06
  • Accepted : 2024.02.06
  • Published : 2024.03.25

Abstract

This study investigates the influence of varying concentrations of boric acid (BA) preservative on the physical and mechanical properties of light red meranti (LRM) found in Sarawak. LRM or Shorea leprosula samples were treated with various concentrations of BA via the dip diffusion method using American Society for Testing and Materials (ASTM) standards. The physical property, particularly the retention rate and mechanical properties, bending strength, modulus of elasticity (MOE), tensile and compression strength parallel to grain of impregnated and control samples were tested to determine the effects of BA preservative. The retention rate was found to increase with increasing BA concentration and higher surface area to volume ratio. The mechanical properties in terms of the MOE and tensile strength parallel to grain were found to be greater than those of the control samples, whereas the bending strength and tensile strength parallel to grain were lower. Amongst the results, only the retention rate and MOE showed significant interaction effects at 5% level of significance between all factors tested (samples size and BA concentration for retention rate and BA concentration for MOE).

Keywords

Acknowledgement

The author would like to thank UiTM Pasir Gudang for the support in the completion of this work.

References

  1. American Society for Testing and Materials [ASTM]. 1992. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials. ASTM D 4442-92. ASTM International, West Conshohocken, PA, USA.
  2. American Society for Testing and Materials [ASTM]. 2006. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM D 1037-06a. ASTM International, West Conshohocken, PA, USA.
  3. American Society for Testing and Materials [ASTM]. 2007. Standard Test Method of Testing Wood Preservatives by Laboratory Soilblock Cultures. ASTM D 1413-99. ASTM International, West Conshohocken, PA, USA.
  4. Ani, S., Salamah, S., Dahlan, M.J., Salmiah, U., Roszaini, K. 2005. Durability of timbers for indoor applications in Malaysia. Timber Technology Bulletin. 37: 139-258.
  5. Arriaga, F., Wang, X., Iniguez-Gonzalez, G., Llana, D.F., Esteban, M., Niemz, P. 2023. Mechanical properties of wood: A review. Forests 14(6): 1202.
  6. Augustina, S., Marbun, S.D., Sudarmanto, Narto, Trisatya, D.R., Santoso, E.B., Pramadani, D., Afni, N.N., Fariha, T.A., Tobing, G.W.L., Syafi'I, W., Cahyono, T.D., Novriyanti, E., Bula, M., Bahanawan, A., Sejati, P.S., Kim, N.H., Dwianto, W., Gerardin, P. 2023. Dimensional stability and mechanical properties of citric acid impregnated samama wood (Anthocephalus macrophyllus (Roxb) Havil) at high curing temperatures. Journal of the Korean Wood Science and Technology 51(6): 431-446. https://doi.org/10.5658/WOOD.2023.51.6.431
  7. Augustina, S., Wahyudi, I., Darmawan, IW., Malik, J., Basri, E., Kojima, Y. 2020. Specific gravity and dimensional stability of boron-densified wood on three lesser-used species from Indonesia. Journal of the Korean Wood Science and Technology 48(4): 458-471. https://doi.org/10.5658/WOOD.2020.48.4.458
  8. Azlan, H.M., Puaad, M.B.F.M., Ahmad, Z., Talip, A.R.A., Yasin, M.H. 2018. Compressive strength properties of Malaysian tropical timber in structural size: Timber strength grading. AIP Conference Proceedings 2020(1): 020034.
  9. Baharuddin, N., Lee, S., Anwar Uyup, M., Md Tahir, P. 2022. Effect of preservative treatment on physical and mechanical properties of bamboo (Gigantochloa scortechinii) strips. BioResources 17(3): 5129-5145. https://doi.org/10.15376/biores.17.3.5129-5145
  10. Belt, T., Altgen, M., Awais, M., Nopens, M., Rautkari, L. 2024. Degradation by brown rot fungi increases the hygroscopicity of heat-treated wood. International Biodeterioration & Biodegradation 186: 105690.
  11. Bergman, R. 2021. Drying and Control of Moisture Content and Dimensional Changes. In: Wood Handbook: Wood as an Engineering Material, Ed. by Ross, R. U.S. Department of Agriculture, Washington, DC, USA.
  12. Bhatia, T.K. 2002. Use of borate-treated wood as part of an IPM approach for durable and sustainable construction. In: Charleston, SC, USA, Proceedings of the 4th International Conference on Urban Pests.
  13. Cha, M.S., Yoon, S.J., Kwon, J.H., Byeon, H.S., Park, H.M. 2022. Mechanical properties of cork composite boards reinforced with metal, glass fiber, and carbon fiber. Journal of the Korean Wood Science and Technology 50(6): 427-435. https://doi.org/10.5658/WOOD.2022.50.6.427
  14. Chu, Y.P., Ho, K.S., Midon, M.S., Malik, A.R.A. 2013. Timber Design Handbook. FRIM, Kepong, Malaysia.
  15. Colakoglu, G., Colak, S., Aydin, I., Yildiz, U.C., Yildiz, S. 2003. Effect of boric acid treatment on mechanical properties of laminated beech veneer lumber. Silva Fennica 37(4): 505-510. https://doi.org/10.14214/sf.488
  16. Damayanti, R., Sribudiani, E., Somadona, S., Djarwanto, Tarmadi, D., Amin, Y., Yusuf, S., Satiti, E.R., Arsyad, W.O.M., Sulaeman, R., Pramasari, D.A. 2020. The movement of boron compound by infusion method and combination of injection and bandage-wrapping. Journal of the Korean Wood Science and Technology 48(4): 513-526. https://doi.org/10.5658/WOOD.2020.48.4.513
  17. de Souza Almeida, A., Criscuolo, G., de Almeida, T.H., Christoforo, A.L., Lahr, F.A.R. 2019. Influence of treatment with water-soluble CCB preservative on the physical-mechanical properties of Brazilian tropical timber. Materials Research 22(6): e20180688.
  18. Fidan, M.S., Adanur, H. 2019. Physical and mechanical properties of wood impregnated with quebracho and boron compounds. Forestist 69(1): 68-80. https://doi.org/10.26650/forestist.2019.041645
  19. Freeman, M.H., Kitchens, S.C., Amburgey, T.L. 2013. Wood Preservative Systems Containing Copper and Borates: Efficacy and Synergy. American Wood Protection Association, Clermont, FL, USA.
  20. Furuno, T., Goto, T. 1978. Structure of the interface between wood and synthetic polymer. XI. The role of polymer in the cell wall on the dimensional stability of wood-polymer composite (WPC). Journal of the Japan Wood Research Society 24(5): 287-293.
  21. Ghani, R.S.M., Lee, M.D. 2021. Challenges of wood modification process for plantation eucalyptus: A review of Australian setting. Journal of the Korean Wood Science and Technology 49(2): 191-209.
  22. Global Forest Watch. 2023. Primary forest loss in Malaysia. https://www.globalforestwatch.org/dashboards/country/MYS/
  23. Green, D.W., Winandy, J.E., Kretschmann, D.E. 1999. Mechanical Properties of Wood. In: Wood Handbook: Wood as an Engineering Material, Ed. by Ross, R. USDA Forest Service, Madison, WI, USA.
  24. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Pari, R. 2019. Physical and mechanical properties of methyl methacrylate-impregnated wood from three fast-growing tropical tree species. Journal of the Korean Wood Science and Technology 47(3): 324-335. https://doi.org/10.5658/WOOD.2019.47.3.324
  25. Ibanez, C.M., Katzenstein, G., Mantero, C., Benitez, V., Camargo, A., Berberian, N., Bollazzi, M. 2023. Ammoniacal zinc borate for wood protection against fungi and insects. Forests 14(6): 1152.
  26. Kim, G.H., Jee, W.K., Ra, J.B. 1996. Reduction in mechanical properties of radiata pine wood associated with incipient brown-rot decay. Journal of Korean Wood Science and Technology 24(1): 81-86.
  27. Kurt, R. 2008. The effect of boric acid/borax treatment on selected mechanical and combustion properties of poplar laminated veneer lumber. Wood Research 53(2): 113-120.
  28. Larasati, A., Sulistyo, J. 2014. The effectiveness of boron preservatives to prevent dry-wood termite attack on mahogany sapwood. Wood Research Journal 5(1): 1-7. https://doi.org/10.51850/wrj.2014.5.1.18-19
  29. Malaysia Timber Industry Board. 2021. Malaysia: Export and Import of Timber Products. Malaysian Timber Council, Kuala Lumpur, Malaysia.
  30. Ng, C.H., Ng, K.K.S., Lee, S.L., Suwa, R., Lee, C.T., Tnah, L.H. 2023. Growth performance and scale insect infestation of Shorea leprosula in a common garden experimental plot. Journal Forestry Research 34(3): 781-792. https://doi.org/10.1007/s11676-022-01510-4
  31. Nunes, A.M., Regazzi, A.J., Goncalves, F.G., Paes, J.B., Almeida, A.T.S., Batista, D.C. 2023. Resistance to biodeterioration of plywood manufactured with veneers treated with boron compounds. Journal of the Indian Academy of Wood Science 20(2): 138-148. https://doi.org/10.1007/s13196-023-00322-1
  32. Ozcan, C., Korkmaz, M. 2019. Determination of relationship between thermal and mechanical properties of wood material. Journal of the Korean Wood Science and Technology 47(4): 408-417. https://doi.org/10.5658/WOOD.2019.47.4.408
  33. Pablopublishing. 2019. Malaysian meranti: A versatile hardwood. https://issuu.com/pablopublishing/docs/ pfa_november_december_2019/s/11516258
  34. Pande, P.K., Bhandari, K., Singh, M. 2007. Utilization Manual of Malayan Shorea Timbers. Indian Council of Forestry Research and Education, Dehradun, India.
  35. Park, H.J., Jo, S.U. 2020. Evaluation of physical, mechanical properties and pollutant emissions of wood-magnesium laminated board (WML board) for interior finishing materials. Journal of the Korean Wood Science and Technology 48(1): 86-94. https://doi.org/10.5658/WOOD.2020.48.1.86
  36. Priadi, T., Lestari, M.D., Cahyono, T.D. 2021. Posttreatment effects of castor bean oil and heating in treated jabon wood on boron leaching, dimensional stability, and decay fungi inhibition. Journal of the Korean Wood Science and Technology 49(6): 602-615. https://doi.org/10.5658/WOOD.2021.49.6.602
  37. Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional stability, color change, and durability of boron-MMA treated red jabon (Antochephalus macrophyllus) wood. Journal of the Korean Wood Science and Technology 48(3): 315-325. https://doi.org/10.5658/WOOD.2020.48.3.315
  38. Priadi, T., Putra, G.S., Cahyono, T.D. 2023. Reliability of the impregnated boron compounds, citric acidand heat-treated samama (Anthocephalus macrophyllus) wood against the fungal and termite attacks. Journal of the Korean Wood Science and Technology 51(1): 49-57. https://doi.org/10.5658/WOOD.2023.51.1.49
  39. Prime Minister's Office of Malaysia. 2023. Malaysia pledge commitment to retain 50 percent land mass under forest and tree cover: PM Anwar. https://www.pmo.gov.my/2023/09/malaysia-pledge-commit ment-to-retain-50-percent-land-mass-under-forest-and-tree-cover-pm-anwar/
  40. Salamah, S., Fauzidah, A., Habibah, M. 1991. A note on dip treatment of meranti with bistributyltin oxide: A commercial wood preservative. Forest Research Institute Malaysia 3(3): 299-301.
  41. Selamat, S., Said, Z., Ahmad, F. 1992. Effectiveness of copper-chrome-boron as wood preservative. Journal of Tropical Forest Science 6(2): 98-115.
  42. Simsek, H., Baysal, E., Peker, H. 2010. Some mechanical properties and decay resistance of wood impregnated with environmentally-friendly borates. Construction and Building Materials 24(11): 2279-2284. https://doi.org/10.1016/j.conbuildmat.2010.04.028
  43. Tay, L. 2023. Know your timber. Malaysian Timber Council. https://mtc.com.my/publication-Brochures-Species.php
  44. Taylor, A., Denavit, M., Lloyd, J., Kim, J.W., Kirker, G., Mankowski, M. 2023. Borate treatment of CLT panels using vacuum: A proof of concept. Forest Products Journal 73(1): 24-30. https://doi.org/10.13073/FPJ-D-22-00060
  45. Temiz, A., Yildiz, U.C., Yildiz, E.D., Yildiz, S., Dizman, E. 2004. The effect of CCA on the mechanical properties of alder wood. Artvin Coruh universitesi Orman Fakultesi Dergisi 5(1): 18-23.
  46. Toker, H. 2007. Determination of effects of boron compounds on some physical mechanical and biological properties of wood. Ph.D. Thesis, Gazi University, Turkey.
  47. Tripathi, S. 2012. Treatability evaluation of meranti with ZiBOC and CCA. International Wood Products Journal 3(2): 70-76. https://doi.org/10.1179/2042645311Y.0000000021
  48. University of Cambridge. 2023. Strength of wood. https://www.doitpoms.ac.uk/tlplib/wood/wood_strength.php
  49. Wilson, A., Yost, P. 2000. Safer pest control: Management of wood-destroying insects. Environmental Building News 9(9): 20.
  50. Winandy, J.E. 1995. Effects of waterborne preservative treatment on mechanical properties: A review. In: New York, NY, USA, Proceedings of the 91st Annual Meeting of the American Wood-Preservation Association.
  51. Winandy, J.E., Barnes, H.M., Mitchell, P.H. 1992. Effects of CCA treatment and drying on tensile strength of lumber. Journal of Materials in Civil Engineering 4(3): 240-251. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:3(240)
  52. Wood Solutions. 2024. Meranti, light red. https://www.woodsolutions.com.au/wood-species/hardwood/meranti-light-red
  53. Yamaguchi, H. 2003. Silicic acid: Boric acid complexes as wood preservatives. Wood Science and Technology 37: 287-297. https://doi.org/10.1007/s00226-003-0190-8
  54. Yamaguchi, H. 2005. Silicic acid/boric acid complexes as ecologically friendly wood preservatives. Forest Products Journal 55(1): 88-92.
  55. Young, R.A. 2007. Wood and Wood Products. In: Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, Ed. by Kent, J.A. Springer, New York, NY, USA. pp. 1234-1293.
  56. Yusof, N.M., Hua, L.S., Tahir, P.M., James, R.M.S., Al-Edrus, S.S.O., Dahali, R., Roseley, A.S.M. 2023. Effects of boric acid pretreatment on the properties of four selected Malaysian bamboo strips. Forests 14(2): 196.
  57. Zhang, K., Saito, Y., Kurokochi, Y., Maeda, K., Arakawa, T., Izawa, N., Okano, T. 2023. Effects of boron compounds impregnation on the physical and vibro-mechanical properties of spruce (Picea sp.). Holzforschung 77(2): 106-118. https://doi.org/10.1515/hf-2022-0139