DOI QR코드

DOI QR Code

Coicis Semen Reduces Staphylococcus aureus Persister Cell Formation by Increasing Membrane Permeability

  • Minjun KIM (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Tae-Jong KIM (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2023.11.27
  • Accepted : 2024.01.24
  • Published : 2024.03.25

Abstract

Unlike resistant cells, persister cells resist antibiotics due to a decreased cellular metabolic rate and can transition back to normal susceptible cells when the antibiotic is removed. These persister cells contribute to the chronic symptoms of infectious diseases and promote the emergence of resistant strains with continuous antibiotic exposure. Therefore, eliminating persister cells represents a promising approach to significantly enhance antibiotic efficacy. Here, we found that Coicis Semen extract reduced Staphylococcus aureus persister cells at a concentration of 0.5 g/L. Linoleic acid and oleic acid, the major components of Coicis Semen extract, exhibited a comparable reduction in persister cells when combined with three antibiotics: ciprofloxacin, oxacillin, and tobramycin. Conversely, these effects were nullified in the presence of the surfactant Tween 80 (1%), suggesting that the hydrophobic characteristics of linoleic acid and oleic acids play a pivotal role in reducing the number of S. aureus persister cells. Considering the concentration-dependent effects of linoleic acid and oleic acid, the persister-reducing activity of Coicis Semen extract was primarily attributed to these fatty acids. Moreover, Coicis Semen extract, linoleic acid, and oleic acid increased the cell membrane permeability of S. aureus. Interestingly, this effect was counteracted by 1% Tween 80, indicating a close association between the reduction of persister cells and the increase in cell membrane permeability. The identified compounds could thus be used to eliminate persister cells, thereby enhancing therapeutic efficacy and shortening treatment duration. When used in conjunction with antibiotics, they may also mitigate chronic symptoms and significantly reduce the emergence of antibiotic-resistant bacteria.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1061888).

References

  1. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  2. Allison, K.R., Brynildsen, M.P., Collins, J.J. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346): 216-220. https://doi.org/10.1038/nature10069
  3. Atashbeyk, D.G., Khameneh, B., Tafaghodi, M., Fazly Bazzaz, B.S. 2014. Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. Pharmaceutical Biology 52(11): 1423-1428. https://doi.org/10.3109/13880209.2014.895018
  4. Balaban, N.Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D.I., Brynildsen, M.P., Bumann, D., Camilli, A., Collins, J.J., Dehio, C., Fortune, S., Ghigo, J.M., Hardt, W.D., Harms, A., Heinemann, M., Hung, D.T., Jenal, U., Levin, B.R., Michiels, J., Storz, G., Tan, M.W., Tenson, T., Van Melderen, L., Zinkernagel, A. 2019. Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology 17(7): 441-448. https://doi.org/10.1038/s41579-019-0196-3
  5. Brezden, A., Mohamed, M.F., Nepal, M., Harwood, J.S., Kuriakose, J., Seleem, M.N., Chmielewski, J. 2016. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. Journal of the American Chemical Society 138(34): 10945-10949. https://doi.org/10.1021/jacs.6b04831
  6. Brotz-Oesterhelt, H., Brunner, N.A. 2008. How many modes of action should an antibiotic have? Current Opinion in Pharmacology 8(5): 564-573. https://doi.org/10.1016/j.coph.2008.06.008
  7. Brun, P., Bernabe, G., Marchiori, C., Scarpa, M., Zuin, M., Cavazzana, R., Zaniol, B., Martines, E. 2018. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: Membrane permeability, biofilm penetration and antimicrobial sensitization. Journal of Applied Microbiology 125(2): 398-408. https://doi.org/10.1111/jam.13780
  8. Carvalho, G., Guilhen, C., Balestrino, D., Forestier, C., Mathias, J.D. 2017. Relating switching rates between normal and persister cells to substrate and antibiotic concentrations: A mathematical modelling approach supported by experiments. Microbial Biotechnology 10(6): 1616-1627. https://doi.org/10.1111/1751-7915.12739
  9. Chang, J., Lee, R.E., Lee, W. 2020. A pursuit of Staphylococcus aureus continues: A role of persister cells. Archives of Pharmacal Research 43(6): 630-638. https://doi.org/10.1007/s12272-020-01246-x
  10. Chang, V.S., Dhaliwal, D.K., Raju, L., Kowalski, R.P. 2015. Antibiotic resistance in the treatment of Staphylococcus aureus keratitis: A 20-year review. Cornea 34(6): 698-703. https://doi.org/10.1097/ICO.0000000000000431
  11. Conlon, B.P. 2014. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells. BioEssays 36(10): 991-996. https://doi.org/10.1002/bies.201400080
  12. Das, S., Akhter, R., Khandaker, S., Huque, S., Das, P., Anwar, M.R., Tanni, K.A., Shabnaz, S., Shahriar, M. 2017. Phytochemical screening, antibacterial and anthelmintic activities of leaf and seed extracts of Coix lacryma-jobi L. Journal of Coastal Life Medicine 5(8): 360-364. https://doi.org/10.12980/jclm.5.2017J7-65
  13. Defraine, V., Fauvart, M., Michiels, J. 2018. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resistance Updates 38: 12-26. https://doi.org/10.1016/j.drup.2018.03.002
  14. DeMars, Z., Singh, V.K., Bose, J.L. 2020. Exogenous fatty acids remodel Staphylococcus aureus lipid composition through fatty acid kinase. Journal of Bacteriology 202(14): e00128-20.
  15. Diekema, D.J., Hsueh, P.R., Mendes, R.E., Pfaller, M.A., Rolston, K.V., Sader, H.S., Jones, R.N. 2019. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrobial Agents and Chemotherapy 63(7): e00355-19.
  16. Dombach, J.L., Quintana, J.L.J., Detweiler, C.S. 2021. Staphylococcal bacterial persister cells, biofilms, and intracellular infection are disrupted by JD1, a membrane-damaging small molecule. mBio 12(5):e01801-21.
  17. Doron, S., Gorbach, S.L. 2008. Bacterial Infections: Overview. In: International Encyclopedia of Public Health, Ed. by Heggenhougen, H.K. Academic Press, Oxford, UK. pp. 273-282.
  18. Fernandes, R., Amador, P., Prudencio, C. 2013. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Reviews and Research in Medical Microbiology 24(1): 7-17. https://doi.org/10.1097/MRM.0b013e3283587727
  19. Fung, K.P., Han, Q.B., Ip, M., Yang, X.S., Lau, C.B.S., Chan, B.C.L. 2017. Synergists from Portulaca oleracea with macrolides against methicillin-resistant Staphylococcus aureus and related mechanism. Hong Kong Medical Journal 23(4 Suppl 5): S38-S42.
  20. Grassi, L., Di Luca, M., Maisetta, G., Rinaldi, A.C., Esin, S., Trampuz, A., Batoni, G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membranetargeting agents. Frontiers in Microbiology 8: 1917.
  21. Ham, Y., Kim, T.J. 2018. Plant extracts inhibiting biofilm formation by Streptococcus mutans without antibiotic activity. Journal of the Korean Wood Science and Technology 46(6): 692-702. https://doi.org/10.5658/WOOD.2018.46.6.692
  22. Ham, Y., Yang, J., Choi, W.S., Ahn, B.J., Park, M.J. 2020. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. Journal of the Korean Wood Science and Technology 48(4):527-547. https://doi.org/10.5658/WOOD.2020.48.4.527
  23. Hansen, S., Lewis, K., Vulic, M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy 52(8): 2718-2726. https://doi.org/10.1128/AAC.00144-08
  24. Hooper, D.C., Wolfson, J.S., Ng, E.Y., Swartz, M.N. 1987. Mechanisms of action of and resistance to ciprofloxacin. The American Journal of Medicine 82(4A): 12-20.
  25. Jandacek, R.J., Heubi, J.E., Tso, P. 2004. A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 127(1): 139-144. https://doi.org/10.1053/j.gastro.2004.04.007
  26. Jang, S.K., Lee, S.Y., Kim, S.H., Hong, C.Y., Park, M.J., Choi, I.G. 2012. Antifungal activities of essential oils from six conifers against Aspergillus fumigatus. Journal of the Korean Wood Science and Technology 40(2): 133-140. https://doi.org/10.5658/WOOD.2012.40.2.133
  27. Kim, W., Conery, A.L., Rajamuthiah, R., Fuchs, B.B., Ausubel, F.M., Mylonakis, E. 2015. Identification of an antimicrobial agent effective against methicillinresistant Staphylococcus aureus persisters using a fluorescence-based screening strategy. PLOS ONE 10(6): e0127640.
  28. LaFleur, M.D., Qi, Q., Lewis, K. 2010. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrobial Agents and Chemotherapy 54(1): 39-44. https://doi.org/10.1128/AAC.00860-09
  29. Lee, B.G., Park, E.Y., Lee, K.E., Jeon, H., Sung, K.H., Paulsen, H., Rubsamen-Schaeff, H., Brotz-Oesterhelt, H., Song, H.K. 2010. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Structural & Molecular Biology 17(4): 471-478. https://doi.org/10.1038/nsmb.1787
  30. Lee, S.Y., Lee, D.S., Cho, S.M., Kim, J.C., Park, M.J., Choi, I.G. 2021. Antioxidant properties of 7 domestic essential oils and identification of physiologically active components of essential oils against Candida albicans. Journal of the Korean Wood Science and Technology 49(1): 23-43. https://doi.org/10.5658/WOOD.2021.49.1.23
  31. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nature Reviews Microbiology 5(1): 48-56. https://doi.org/10.1038/nrmicro1557
  32. Li, D.H.S., Chung, Y.S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G.D., Cheng, Y.Q., Maurizi, M.R., Guarne, A., Ortega, J. 2010. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chemistry & Biology 17(9): 959-969. https://doi.org/10.1016/j.chembiol.2010.07.008
  33. Martinez, J.L., Baquero, F. 2002. Interactions among strategies associated with bacterial infection: Pathogenicity, epidemicity, and antibiotic resistance. Clinical Microbiology Reviews 15(4): 647-679. https://doi.org/10.1128/CMR.15.4.647-679.2002
  34. Mulcahy, L.R., Burns, J.L., Lory, S., Lewis, K. 2010. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology 192(23):6191-6199. https://doi.org/10.1128/JB.01651-09
  35. Myeong, S., Lee, Y.J., Kim, D.H., Kim, T.J. 2023. Improvement of inflammation, diabetes, and obesity by forest product-derived polysaccharides through the human intestinal microbiota. Journal of the Korean Wood Science and Technology 51(5): 358-380.
  36. Nam, J.B., Oh, G.H., Yang, S.M., Lee, S.E., Kang, S.G. 2018. Evaluation of antioxidant activities of water extract from microwave torrefied oak wood. Journal of the Korean Wood Science and Technology 46(2):178-188. https://doi.org/10.5658/WOOD.2018.46.2.178
  37. Oliveira, D., Borges, A., Simoes, M. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10(6): 252.
  38. Ooi, N., Miller, K., Randall, C., Rhys-Williams, W., Love, W., Chopra, I. 2009. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. Journal of Antimicrobial Chemotherapy 65(1): 72-78. https://doi.org/10.1093/jac/dkp409
  39. Otto, M. 2014. Staphylococcus aureus toxins. Current Opinion in Microbiology 17: 32-37. https://doi.org/10.1016/j.mib.2013.11.004
  40. Park, Y.G., Kang, B.S. 2000. Studies on the effects of Coicis Semen and Sophorae Radix on the antioxidation. The Korea Journal of Herbology 15(2): 57.
  41. Wang, Y., Bojer, M.S., George, S.E., Wang, Z., Jensen, P.R., Wolz, C., Ingmer, H. 2018. Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Scientific Reports 8(1): 10849.
  42. Wu, S., Yu, P.L., Flint, S. 2017. Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control 77: 243-250. https://doi.org/10.1016/j.foodcont.2017.02.011
  43. Xi, X.J., Zhu, Y.G., Tong, Y.P., Yang, X.L., Tang, N.N., Ma, S.M., Li, S., Cheng, Z. 2016. Assessment of the genetic diversity of different Job's tears (Coix lacryma-jobi L.) accessions and the active composition and anticancer effect of its seed oil. PLOS ONE 11(4): e0153269.
  44. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. Journal of the Korean Wood Science and Technology 47(6): 674-691. https://doi.org/10.5658/WOOD.2019.47.6.674
  45. Yang, J., Choi, W.S., Lee, S.Y., Kim, M., Park, M.J. 2022. Antioxidant activities of essential oils from Citrus × natsudaidai (Yu. Tanaka) hayata peels at different ripening stage. Journal of the Korean Wood Science and Technology 50(4): 272-282. https://doi.org/10.5658/WOOD.2022.50.4.272
  46. Yoon, J., Kim, T.J. 2023. Synergistic growth inhibition of herbal plant extract combinations against Candida albicans. Journal of the Korean Wood Science and Technology 51(2): 145-156. https://doi.org/10.5658/WOOD.2023.51.2.145
  47. Yun, H.J., Lee, Y.J., Kang, M.S., Baek, J.H. 2009. Inhibitory effect of Coicis Semen extract (CSE) on pro-inflammatory mediatory. The Journal of Pediatrics of Korean Medicine 23(1): 159-171.
  48. Yuyama, K.T., Rohde, M., Molinari, G., Stadler, M., Abraham, W.R. 2020. Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other Gram-positive bacteria. Antibiotics 9(11): 788.