DOI QR코드

DOI QR Code

Evaluation of Fiber Lamination Characteristics via Multi-nozzle Arrangement for Mass-scale Electrospinning Equipment

대규모 전기방사 장치를 위한 멀티노즐 배열 구조에 따른 섬유 적층 특성 평가

  • Jong-Hwan Lee (DYETEC, Carbon Composite Virtual Engineering Research Center) ;
  • Jong-Hyuk Lee (DYETEC, Carbon Composite Virtual Engineering Research Center) ;
  • Won-Jun Lee (National Institute of Ecology) ;
  • Jee-Hyun Sim (DYETEC, Carbon Composite Virtual Engineering Research Center)
  • 이종환 (DYETEC연구원 전북탄소복합체가상공학센터) ;
  • 이종혁 (DYETEC연구원 전북탄소복합체가상공학센터) ;
  • 이원준 (국립생태원) ;
  • 심지현 (DYETEC연구원 전북탄소복합체가상공학센터)
  • Received : 2023.11.27
  • Accepted : 2023.12.07
  • Published : 2024.02.29

Abstract

We evaluated the stacking uniformity characteristics using various multi-nozzle patterns of mass-scale electrospinning equipment (nozzle 680 EA, width 1,000 mm). For the test, polyether sulfone (PES), and a polymer mixed solution was prepared by mixing dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) as solvents at a constant volume ratio. Cetyltrimethylammonium bromide (CTAB) was added to improve the electrospun below at the critical concentration of PES polymer. All experimental variables of electrospinning were fixed. In the multi-nozzle pattern, 12 nozzles arranged in the horizontal direction constituted one column, and a total of four columns were arranged in one set in an intersecting arrangement. The four multi-nozzle patterns were configured with inter-nozzle spacing of 75 mm, 78 mm, 80 mm, and 83 mm, respectively. For property evaluation, scanning electron microscopy (SEM), weight analysis, pore analysis, and air permeability measurement were performed, and the performance as an air filter was measured by a filter filtration performance test. Test results confirmed that the uniformity of fiber lamination improved as the multi-nozzle pattern changed from 75 to 83.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIE-B-2023-18).

References

  1. J. Zeleny, "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces", Phys. Rev., 1914, 3, 69-91. https://doi.org/10.1103/PhysRev.3.69
  2. A. Formhals, "Process and Apparatus for Preparing Artificial Threads", US Patent, 1,975,504 (1934).
  3. A. Formhals, "Method and Apparatus for Spinning", US Patent, 2,349,950 (1944).
  4. N. Tucker, J. J. Stanger, M. P. Staiger, H. Razzaq, and K. Hofman, "The History of the Science and Technology of Electrospinning from 1600 to 1995", J. Eng. Fiber Fabr., 2012, 7, 63-73. https://doi.org/10.1177/155892501200702S10
  5. L. Larrondo and R. St. J. Manley, "Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties", J. Polym. Sci. B Polym. Phys., 1981, 19, 909-920. https://doi.org/10.1002/pol.1981.180190601
  6. J. Doshi, and D. H. Reneker, "Electrospinning Process and Applications of Electrospun Fibers", J. Electrostat., 1995, 35, 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  7. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and Electrically Forced Jets. I. Stability Theory", Phys. Fluids, 2001, 13, 2201-2220. https://doi.org/10.1063/1.1383791
  8. H. Karakas, "Electrospinning of Nanofibers and Their Applications", Istanbul Technical University, Textile Technologies and Design Faculty, 2015.
  9. J. H. He, Y. Liu, L. F. Mo, Y. Q. Wan, and L. Xu, "Electrospun Nanofibres and Their Applications", Shawbury, UK: ISmithers, 2008.
  10. C. J. Luo, S. D. Stoyanov, E. Stride, and E. Pelan, "Electrospinning Versus Fibre Production Methods: from Specifics to Technological Convergence", Chem. Soc. Rev., 2012, 41, 4708-4735. https://doi.org/10.1039/c2cs35083a
  11. W. E. Teo and S. Ramakrishna, "A Review on Electrospinning Design and Nanofibre Assemblies", Nanotechnology, 2006, 17, R89.
  12. S. Zhang, H. Liu, F. Zuo, X. Yin, J. Yu, and B. Ding, "A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter", Small, 2017, 13, 1603151.
  13. S. Zhang, H. Liu, J. Yu, and B. Ding, "Anti-deformed Polyacrylonitrile/Polysulfone Composite Membrane with Binary Structures for Effective Air Filtration", ACS Appl. Mater. Interfaces, 2016, 8, 8086-8095. https://doi.org/10.1021/acsami.6b00359
  14. X. Li, C. Wang, X. Huang, T. Zhang, X. Wang, M. Min, L. Wang, H. Huang, and B. S. Hsiao, "Anionic Surfactant-Triggered Steiner Geometrical Poly(vinylidene fluoride) Nanofiber/Nanonet Air Filter for Efficient Particulate Matter Removal", ACS Appl. Mater. Interfaces, 2018, 10, 42891-42904. https://doi.org/10.1021/acsami.8b16564
  15. J. Xu, C. Liu, P. C. Hsu, R. Zhang, Y. Liu, and Y. Cui, "Roll-to-roll Transfer of Electrospun Nanofiber Film for High-efficiency Transparent Air Filter", Nano Lett., 2016, 16, 1270-1275. https://doi.org/10.1021/acs.nanolett.5b04596
  16. S. Agarwal, J. H. Wendorff, and A. Greiner, "Use of Electrospinning Technique for Biomedical Applications", Polymer, 2008, 49, 5603-5621. https://doi.org/10.1016/j.polymer.2008.09.014
  17. G. H. Kim, Y.-S. Cho, and W. D. Kim, "Stability Analysis for Multi-jets Electrospinning Process Modified with a Cylindrical Electrode", Eur. Polym. J., 2006, 42, 2031-2038. https://doi.org/10.1016/j.eurpolymj.2006.01.026
  18. S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, "Multiple Jets in Electrospinning: Experiment and Modeling", Polymer, 2005, 46, 2889-2899. https://doi.org/10.1016/j.polymer.2005.01.054
  19. H. S. SalehHudin, E. N. Mohamad, W. N. Mahadi, and A. M. Afifi, "Simulation and Experimental Study of Parameters in Multiple-nozzle Electrospinning: Effects of Nozzle Arrangement on Jet Paths and Fiber Formation", J. Manuf. Processes, 2021, 62, 440-449. https://doi.org/10.1016/j.jmapro.2020.12.024
  20. J. H. Lee, J. M. Hyun, J. H. Lee, and R. Kim, "Filtration Properties of Multi-Layered Structures of High-Performance Air Filter Media Manufactured via Electrospinning", Text. Sci. Eng., 2019, 56, 369-378.
  21. A. A. Kirsh, I. B. Stechkian, and N. A. Fuchs, "Efficiency of Aerosol Filters Made of Ultrafine Polydisperse Fibres", J. Aerosol. Sci., 1975, 6, 119-124. https://doi.org/10.1016/0021-8502(75)90004-X
  22. I. P. Beckman, G. Berry, J. Ross, G. Riveros, and H. Cho, "Prediction of Air Filtration Efficiency and Airflow Resistance of Air Filter Media Using Convolutional Neural Networks and Synthetic Data Derived from Simulated Media", J. Aerosol. Sci., 2023, 171, 106164.
  23. X. Zhao, S. Wang, X. Yin, J. Yu, and B. Ding, "Slip-Effect Functional Air Filter for Efficient Purification of PM2.5", Sci. Rep., 2016, 17, 35472.