DOI QR코드

DOI QR Code

APPLICATION OF NEW CONTRACTIVE CONDITION IN INTEGRAL EQUATION

  • Amrish Handa (Department of Mathematics, Govt. P. G. Arts and Science College) ;
  • Dinesh Verma (Govt. Madhav Science College Ujjain (M.P.))
  • Received : 2023.08.29
  • Accepted : 2023.10.25
  • Published : 2024.02.28

Abstract

In this paper, first we establish a unique common fixed point theorem satisfying new contractive condition on partially ordered non-Archimedean fuzzy metric spaces and give an example to support our result. By using the result established in the first section of the manuscript, we formulate a unique common coupled fixed point theorem and also give an example to validate our result. In the end, we study the existence of solution of integral equation to verify our hypothesis. These results generalize, improve and fuzzify several well-known results in the existing literature.

Keywords

References

  1. S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. 2014 (2014), Article ID 287492. https://doi.org/10.1155/2014/287492
  2. S. Beloul & A. Tomar: Integral type common fixed point theorems in modified intuitionistic fuzzy metric spaces. Afr. Mat. 30, 2019, no. 3-4, 581-596. https://doi.org/10.1007/s13370-019-00668-1
  3. T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  4. B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
  5. I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014 (2014), Paper No. 207. http://dx.doi.org/10.1186/1687-1812-2014-207
  6. A. George & P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  7. D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
  8. A. Handa: Employing weak 𝜓 - 𝜑 contraction on fuzzy metric spaces with application. Sarajevo J. Math. 17(30) (2021), no. 2, 237-258. https://doi.org/10.5644/SJM.17.02.10
  9. A. Handa: Utilizing weak 𝜓 - 𝜑 contraction on fuzzy metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 30 (2023), no. 3, 307-336. https://doi.org/10.7468/jksmeb.2023.30.3.309
  10. X. Hu: Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. Volume 2011, Article ID 363716, 14 pages. https://doi.org/10.1155/2011/363716
  11. V. Istratescu: An Introduction to Theory of Probabilistic Metric Spaces with Applications. Ed, Tehnica, Bucuresti, 1974 (in Romanian).
  12. M. Jain, A. Tomar, M. Joshi & K. Tas: Ordered generalized 𝜑-contraction in ordered fuzzy metric spaces with an application in dynamic programming. J. Math. Control Sci. Appls. 7 (2021), no. 1, 57-68. http://hdl.handle.net/20.500.12416/5905
  13. I. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 336-344. http://dml.cz/dmlcz/125556
  14. V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009) (2009), no .12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  15. G. Prasad: Coincidence points of relational 𝜓-contractions and an application. Afr. Mat. 32 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6
  16. G. Prasad, A. Tomar, R.C. Dimri and A. Bartwal: Coincidence theorems via contractive mappings in ordered non-Archimedean fuzzy metric spaces. J. Korea. Soc. Math. Educ., Ser. B: Pure Appl. Math. 27 (2020), no. 4, 187-205. https://doi.org/10.7468/JKSMEB.2020.27.4.187
  17. B. Schweizer & A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.