References
- S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. 2014 (2014), Article ID 287492. https://doi.org/10.1155/2014/287492
- S. Beloul & A. Tomar: Integral type common fixed point theorems in modified intuitionistic fuzzy metric spaces. Afr. Mat. 30, 2019, no. 3-4, 581-596. https://doi.org/10.1007/s13370-019-00668-1
- T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014 (2014), Paper No. 207. http://dx.doi.org/10.1186/1687-1812-2014-207
- A. George & P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- A. Handa: Employing weak 𝜓 - 𝜑 contraction on fuzzy metric spaces with application. Sarajevo J. Math. 17(30) (2021), no. 2, 237-258. https://doi.org/10.5644/SJM.17.02.10
- A. Handa: Utilizing weak 𝜓 - 𝜑 contraction on fuzzy metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 30 (2023), no. 3, 307-336. https://doi.org/10.7468/jksmeb.2023.30.3.309
- X. Hu: Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. Volume 2011, Article ID 363716, 14 pages. https://doi.org/10.1155/2011/363716
- V. Istratescu: An Introduction to Theory of Probabilistic Metric Spaces with Applications. Ed, Tehnica, Bucuresti, 1974 (in Romanian).
- M. Jain, A. Tomar, M. Joshi & K. Tas: Ordered generalized 𝜑-contraction in ordered fuzzy metric spaces with an application in dynamic programming. J. Math. Control Sci. Appls. 7 (2021), no. 1, 57-68. http://hdl.handle.net/20.500.12416/5905
- I. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 336-344. http://dml.cz/dmlcz/125556
- V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009) (2009), no .12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- G. Prasad: Coincidence points of relational 𝜓-contractions and an application. Afr. Mat. 32 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6
- G. Prasad, A. Tomar, R.C. Dimri and A. Bartwal: Coincidence theorems via contractive mappings in ordered non-Archimedean fuzzy metric spaces. J. Korea. Soc. Math. Educ., Ser. B: Pure Appl. Math. 27 (2020), no. 4, 187-205. https://doi.org/10.7468/JKSMEB.2020.27.4.187
- B. Schweizer & A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.