References
- N. K. Kuromoto, R. A. Simao, and G. A. Soares, Titanium Oxide Films Produced on Commercially Pure Titanium by Anodic Oxidation with Different Voltage, Materials Characterization, 58, 114 (2007). Doi: https://doi.org/10.1016/j.matchar.2006.03.020
- W. J. Lee, M. Alhoshan, W. H. Smyrl, Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Process: Electrochemical Properties, Journal of The Electrochemical Society, 153, B499 (2006). Doi: https://doi.org/10.1149/1.2347098
- H. Li, J. Qu, Q. Cui, H. Xu, H. Luo, M. Chi and S. Dai, TiO2 Nanotube Arrays Grown in Ionic Liquids: High-efficiency in Photocatalysis and Pore-widening, Journal of Materials Chemistry, 21, 9487 (2007). Doi: https://doi.org/10.1039/c1jm11540e
- Y. Park and C. Jeong, Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance, Corrosion Science and Technology, 20, 256 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.256
- S. Yoriya and C. A. Grimes, Self-Assembled TiO2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening, Langmuir, 26, 417 (2010). Doi: https://doi.org/10.1021/la9020146
- E. Byon, S. Moon, S. B. Cho, C. Jeong, Y. Jeong and Y. T. Sul, Electrochemical Property and Apatite Formation of Metal ion Implanted Titanium for Medical Implants, Surface and Coatings Technology, 200, 1018 (2005). Doi: https://doi.org/10.1016/j.surfcoat.2005.02.133
- S. Moon, C. Jeong, E. Byon and Y. Jeong, Electrochemical Behavior of titanium in NaOH Solutions, ECS Transactions, 1, 151 (2006). Doi: https://doi.org/10.1149/1.2215498
- S. Berger, J. Kunze, P. Schmuki, D. Leclere, A. T. Valota, P. Skeldon and G. E. Thompson, A lithographic Approach to Determine Volume Expansion Factors during Anodization: Using the Example of Initiation and Growth of TiO2- Nanotubes, Electrochimica Acta, 54, 5942 (2009). Doi: https://doi.org/10.1016/j.electacta.2009.05.064
- P. Li, S. Dai, D. Dai, Z. Zou, R. Wang, P. Zhu and F. Huang, Influence of the Microstructure of Sputtered Ti Films on the Anodization toward TiO2 Nanotubes Arrays, Chemical Physics Letters, 826, 140675 (2023). Doi: https://doi.org/10.1016/j.cplett.2023.140675
- J. H. Xing, Z. B. Xia, J. F. Hu, Y. H. Zhang and L. Zhong, Growth and Crystallization of Titanium Oxide Films at Different Anodization Modes, Journal of The Electrochemical Society, 160, C239 (2013). Doi: https://doi.org/10.1149/2.070306jes
- X. Yu, Y. Li, W. Ge, Q. Yang, N. Zhu and K. Kalantarzadeh, Formation of Nanoporous Titanium Oxide Films on Silicon Substrates Using and Anodization Process, Nanotechnology, 17, 808 (2006). Doi: https://doi.org/10.1088/0957-4484/17/3/033
- S. H. Kim and C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089
- J. M. Jaquez-Munoz, C. Gaona-Tiburcio, C. T. MendezRamirez, M. A. Baltazar-Zamora, F. Estupinan-Lopez, R. G. Bautista-Margulis, and F Almeraya-Calderon, Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques, Metals, 13, 476 (2023). Doi: https://doi.org/10.3390/met13030476
- A. K. Sharma, Anodizing Titanium for Space Applications, Thin Solid Films, 208, 48 (1992). Doi: https://doi.org/10.1016/0040-6090(92)90946-9
- M. Izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y
- C. C. Chen, J. H. Chen and C. G. Chao, Post-treatment Method of Producing Ordered Arrays of Anodic Aluminum Oxide Using General Purity Commercial (99.7%) Aluminum, Japanese Journal of Applied Physices, 44, 1529 (2005). Doi: https://doi.org/10.1143/JJAP.44.1529
- C. Jeong, J. Lee, K. Sheppard and C. H. Choi, Airimpregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
- H. Wang, Z. Huang, L. Zhang, J. Ding, Z. Ma, Y. Liu and H. Yang, Engineering of Highly Ordered TiO2 Nanopore Arrays by Anodization, Applied Surface Science, 377, 335 (2016). Doi: https://doi.org/10.1016/j.apsusc.2016.03.184
- C. Yao and T. J. Webster, Anodization: A Promising Nano-Modification Technique Implants for Orthopedic Applications, Journal of Nanoscience and Nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447
- D. H. Shin and S. J. Kim, Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection, Corrosion Science and Technology, 22, 221 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.221
- F. Keller, M. S. Hunter and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, Journal of The Electrochemical Society, 100, 411 (1953). Doi: https://doi.org/10.1149/1.2781142
- J. M. Calderon, P. Drob, C. Vasilescu, S. I. Drob, M. Popa and E. Vasilescu, Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosion Properties, Corrosion Science and Technology, 16, 257 (2017). Doi: https://doi.org/10.14773/cst.2017.16.5.257
- H. Masuda, K, Yada and A. Osaka, Self-ordering of Cell Configuration of Anodic Porous Alumina with Large-size Pores in Phosphoric Acid Solution, Japanese Journal of Applied Physices, 37, L1340 (1998). Doi: https://doi.org/10.1143/JJAP.37.L1340
- Y. Choi and C. Jeong, Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium, Corrosion Science and Technology, 22, 193 (2023). Doi: https://doi.org/10.14773/cst.2023.22.3.193
- J. Evertsson, N. A., Vinogradov, G. S. Harlow, F. Carla, S. R. McKibbin, L. Rullik and E. Lundgren, Self-organization of Porous Anodic Alumina Films Studied in situ by Grazing-incidence Transmission Small-angle X-ray Scattering, RSC Advances, 8, 18980 (2018). Doi: https://doi.org/10.1039/C8RA02913J
- S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee and K. H. Lee, Fabrication of Highly Ordered Pore Array in Anodic Aluminum Oxide, Korean Journal of Chemical Engineering, 19, 467, Doi: https://doi.org/10.1007/BF02697158
- H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-step Replication of Honeycomb Structures of Anodic Alumina, Science, 268, 1466 (1995). Doi: https://doi.org/10.1126/science.268.5216.1466
- H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228
- Y. Park, H. Ji and C. Jeong, Development of Superhydrophilic 6061 Aluminum Alloy by Stepwise Anodization According to Pore-widening Time, Korean Journal of Metals and Materials, 58, 97 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.2.97
- A. E. Kozhukhoova, S. P. Du Preez and D. G. Bessarabov, The Effects of Pore Widening and Calcination on Anodized Aluminum Oxide Prepared from Al6082, Surface and Coatings Technology, 383, 125234 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2019.125234
- H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
- R. Blossey, Self-cleaning Surfaces-Virtual Realities, Nature Materials, 2, 301 (2003). Doi: https://doi.org/10.1038/nmat856
- C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
- C. Jeong and C. H. Choi, Single-step Direct Fabrication of Pillar-on-pore hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
- A. B. D. Cassie and S. Baxter, Wettability of Porous Surfaces, Transactions of the Faraday Society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546
- M. Tang, J. He, J. Zhou and P. He, Pore-widening with the Assistance of Ultrasonic: A Novel Process for Preparing Porous Anodic Aluminum Oxide Membrane, Materials Letters, 60, 2098 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.12.080
- J. A. Varela, O. J. Whittemore and E. Longo, Pore Size Evolution during Sintering of Ceramic Oxides, ). Ceramics International, 16, 177 (1990). Doi: https://doi.org/10.1016/0272-8842(90)90053-I
- D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits and J. M. Xu, Nonlithographic Nano-wire Arrays: Fabrication, Physics, and Device Applications, IEEE Trnas. Electron. Devices., 43, 1646 (1996). Doi: https://doi.org/10.1109/16.536810
- S. Wu, H. Zhou, M. Hao, X. Wei, S. Li, H. Yu and Z. Chen, Fast Response Hydrogen Sensors Based on Anodic Aluminum Oxide with Pore-widening Treatment, Applied Surface Science, 380, 47 (2016). Doi: https://doi.org/10.1016/j.apsusc.2016.02.087
- Y. H. Ogata, A. Koyama, F. A. Harraz, M. S. Salem and T. Sakka, Electrochemical Formation of Porous Silicon with Medium-sized Pores, Electrochemistry, 75, 270 (2007). Doi: https://doi.org/10.5796/electrochemistry.75.270
- C. Jeong, J. Jung, K. Sheppard and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342
- L. Zaraska, G. D. Sulka and M. Jaskula, Anodic Alumina Membranes with Defined Pore Diameters and Thicknesses Obtained by Adjusting the Anodizing Duration and Pore Opening/Widening Time, Journal of Solid State Electrochemistry, 15, 2427 (2011). Doi: https://doi.org/10.1007/s10008-011-1471-z
- S. M. Suchitra, P. R. Reddy, and N. K. Udayashankar, Effect of Pore Widening Time on the Structural Aspects of Self-Organized Nanopore Arrays Formed by Anodization of Aluminum in Chromic Acid, Materialstoday: Proceedings, 3, 2042 (2016). Doi: https://doi.org/10.1016/j.matpr.2016.04.107