DOI QR코드

DOI QR Code

Nano-engineering of Hybrid Titanium Oxide Structure (TiO2) using Pore-widening Concentration for Enhanced Superhydrophilicity

  • Yeji Choi (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Chanyoung Jeong (Department of Advanced Materials Engineering, Dong-eui University)
  • Received : 2024.01.05
  • Accepted : 2024.01.25
  • Published : 2024.02.29

Abstract

Titanium alloy is gaining attention in the medical industry due to its excellent biocompatibility and osteoconductivity. However, the natural oxide film on the titanium surface is insoluble, resulting in inadequate bone adhesion. Therefore, it is necessary to optimize the contact between biological tissues and implant surfaces, and alter the chemical composition and morphological characteristics of the implant surface. In this study, the anodization method was applied to titanium surface treatment to form a uniform and robust oxide film. Subsequently, a chemical process, pore-widening, was employed to change the morphological characteristics of the oxide film. The concentration of the pore-widening solution was varied at 2, 4, 6, and 8 wt% and the process time was set at 30 and 60 minutes. As the concentration of the pore-widening solution increased the pore diameter of the oxide film increased. Notably, at 6 wt% for 60 minutes, the oxide film exhibited a coexistence of pillars and pores. Based on this, it was determined that surface roughness increased with higher concentration and longer process time. Additionally, the presence of pillars and pores structures maximized hydrophilicity. This study provides insights into enhancing the surface properties of titanium for improved performance in medical implants.

Keywords

References

  1. N. K. Kuromoto, R. A. Simao, and G. A. Soares, Titanium Oxide Films Produced on Commercially Pure Titanium by Anodic Oxidation with Different Voltage, Materials Characterization, 58, 114 (2007). Doi: https://doi.org/10.1016/j.matchar.2006.03.020 
  2. W. J. Lee, M. Alhoshan, W. H. Smyrl, Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Process: Electrochemical Properties, Journal of The Electrochemical Society, 153, B499 (2006). Doi: https://doi.org/10.1149/1.2347098 
  3. H. Li, J. Qu, Q. Cui, H. Xu, H. Luo, M. Chi and S. Dai, TiO2 Nanotube Arrays Grown in Ionic Liquids: High-efficiency in Photocatalysis and Pore-widening, Journal of Materials Chemistry, 21, 9487 (2007). Doi: https://doi.org/10.1039/c1jm11540e 
  4. Y. Park and C. Jeong, Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance, Corrosion Science and Technology, 20, 256 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.256 
  5. S. Yoriya and C. A. Grimes, Self-Assembled TiO2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening, Langmuir, 26, 417 (2010). Doi: https://doi.org/10.1021/la9020146 
  6. E. Byon, S. Moon, S. B. Cho, C. Jeong, Y. Jeong and Y. T. Sul, Electrochemical Property and Apatite Formation of Metal ion Implanted Titanium for Medical Implants, Surface and Coatings Technology, 200, 1018 (2005). Doi: https://doi.org/10.1016/j.surfcoat.2005.02.133 
  7. S. Moon, C. Jeong, E. Byon and Y. Jeong, Electrochemical Behavior of titanium in NaOH Solutions, ECS Transactions, 1, 151 (2006). Doi: https://doi.org/10.1149/1.2215498 
  8. S. Berger, J. Kunze, P. Schmuki, D. Leclere, A. T. Valota, P. Skeldon and G. E. Thompson, A lithographic Approach to Determine Volume Expansion Factors during Anodization: Using the Example of Initiation and Growth of TiO2- Nanotubes, Electrochimica Acta, 54, 5942 (2009). Doi: https://doi.org/10.1016/j.electacta.2009.05.064 
  9. P. Li, S. Dai, D. Dai, Z. Zou, R. Wang, P. Zhu and F. Huang, Influence of the Microstructure of Sputtered Ti Films on the Anodization toward TiO2 Nanotubes Arrays, Chemical Physics Letters, 826, 140675 (2023). Doi: https://doi.org/10.1016/j.cplett.2023.140675 
  10. J. H. Xing, Z. B. Xia, J. F. Hu, Y. H. Zhang and L. Zhong, Growth and Crystallization of Titanium Oxide Films at Different Anodization Modes, Journal of The Electrochemical Society, 160, C239 (2013). Doi: https://doi.org/10.1149/2.070306jes 
  11. X. Yu, Y. Li, W. Ge, Q. Yang, N. Zhu and K. Kalantarzadeh, Formation of Nanoporous Titanium Oxide Films on Silicon Substrates Using and Anodization Process, Nanotechnology, 17, 808 (2006). Doi: https://doi.org/10.1088/0957-4484/17/3/033 
  12. S. H. Kim and C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089 
  13. J. M. Jaquez-Munoz, C. Gaona-Tiburcio, C. T. MendezRamirez, M. A. Baltazar-Zamora, F. Estupinan-Lopez, R. G. Bautista-Margulis, and F Almeraya-Calderon, Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques, Metals, 13, 476 (2023). Doi: https://doi.org/10.3390/met13030476 
  14. A. K. Sharma, Anodizing Titanium for Space Applications, Thin Solid Films, 208, 48 (1992). Doi: https://doi.org/10.1016/0040-6090(92)90946-9 
  15. M. Izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y 
  16. C. C. Chen, J. H. Chen and C. G. Chao, Post-treatment Method of Producing Ordered Arrays of Anodic Aluminum Oxide Using General Purity Commercial (99.7%) Aluminum, Japanese Journal of Applied Physices, 44, 1529 (2005). Doi: https://doi.org/10.1143/JJAP.44.1529 
  17. C. Jeong, J. Lee, K. Sheppard and C. H. Choi, Airimpregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392 
  18. H. Wang, Z. Huang, L. Zhang, J. Ding, Z. Ma, Y. Liu and H. Yang, Engineering of Highly Ordered TiO2 Nanopore Arrays by Anodization, Applied Surface Science, 377, 335 (2016). Doi: https://doi.org/10.1016/j.apsusc.2016.03.184 
  19. C. Yao and T. J. Webster, Anodization: A Promising Nano-Modification Technique Implants for Orthopedic Applications, Journal of Nanoscience and Nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447 
  20. D. H. Shin and S. J. Kim, Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection, Corrosion Science and Technology, 22, 221 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.221 
  21. F. Keller, M. S. Hunter and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, Journal of The Electrochemical Society, 100, 411 (1953). Doi: https://doi.org/10.1149/1.2781142 
  22. J. M. Calderon, P. Drob, C. Vasilescu, S. I. Drob, M. Popa and E. Vasilescu, Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosion Properties, Corrosion Science and Technology, 16, 257 (2017). Doi: https://doi.org/10.14773/cst.2017.16.5.257 
  23. H. Masuda, K, Yada and A. Osaka, Self-ordering of Cell Configuration of Anodic Porous Alumina with Large-size Pores in Phosphoric Acid Solution, Japanese Journal of Applied Physices, 37, L1340 (1998). Doi: https://doi.org/10.1143/JJAP.37.L1340 
  24. Y. Choi and C. Jeong, Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium, Corrosion Science and Technology, 22, 193 (2023). Doi: https://doi.org/10.14773/cst.2023.22.3.193 
  25. J. Evertsson, N. A., Vinogradov, G. S. Harlow, F. Carla, S. R. McKibbin, L. Rullik and E. Lundgren, Self-organization of Porous Anodic Alumina Films Studied in situ by Grazing-incidence Transmission Small-angle X-ray Scattering, RSC Advances, 8, 18980 (2018). Doi: https://doi.org/10.1039/C8RA02913J 
  26. S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee and K. H. Lee, Fabrication of Highly Ordered Pore Array in Anodic Aluminum Oxide, Korean Journal of Chemical Engineering, 19, 467, Doi: https://doi.org/10.1007/BF02697158 
  27. H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-step Replication of Honeycomb Structures of Anodic Alumina, Science, 268, 1466 (1995). Doi: https://doi.org/10.1126/science.268.5216.1466 
  28. H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228 
  29. Y. Park, H. Ji and C. Jeong, Development of Superhydrophilic 6061 Aluminum Alloy by Stepwise Anodization According to Pore-widening Time, Korean Journal of Metals and Materials, 58, 97 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.2.97 
  30. A. E. Kozhukhoova, S. P. Du Preez and D. G. Bessarabov, The Effects of Pore Widening and Calcination on Anodized Aluminum Oxide Prepared from Al6082, Surface and Coatings Technology, 383, 125234 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2019.125234 
  31. H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231 
  32. R. Blossey, Self-cleaning Surfaces-Virtual Realities, Nature Materials, 2, 301 (2003). Doi: https://doi.org/10.1038/nmat856 
  33. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395 
  34. C. Jeong and C. H. Choi, Single-step Direct Fabrication of Pillar-on-pore hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n 
  35. A. B. D. Cassie and S. Baxter, Wettability of Porous Surfaces, Transactions of the Faraday Society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546 
  36. M. Tang, J. He, J. Zhou and P. He, Pore-widening with the Assistance of Ultrasonic: A Novel Process for Preparing Porous Anodic Aluminum Oxide Membrane, Materials Letters, 60, 2098 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.12.080 
  37. J. A. Varela, O. J. Whittemore and E. Longo, Pore Size Evolution during Sintering of Ceramic Oxides, ). Ceramics International, 16, 177 (1990). Doi: https://doi.org/10.1016/0272-8842(90)90053-I 
  38. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits and J. M. Xu, Nonlithographic Nano-wire Arrays: Fabrication, Physics, and Device Applications, IEEE Trnas. Electron. Devices., 43, 1646 (1996). Doi: https://doi.org/10.1109/16.536810 
  39. S. Wu, H. Zhou, M. Hao, X. Wei, S. Li, H. Yu and Z. Chen, Fast Response Hydrogen Sensors Based on Anodic Aluminum Oxide with Pore-widening Treatment, Applied Surface Science, 380, 47 (2016). Doi: https://doi.org/10.1016/j.apsusc.2016.02.087 
  40. Y. H. Ogata, A. Koyama, F. A. Harraz, M. S. Salem and T. Sakka, Electrochemical Formation of Porous Silicon with Medium-sized Pores, Electrochemistry, 75, 270 (2007). Doi: https://doi.org/10.5796/electrochemistry.75.270 
  41. C. Jeong, J. Jung, K. Sheppard and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342 
  42. L. Zaraska, G. D. Sulka and M. Jaskula, Anodic Alumina Membranes with Defined Pore Diameters and Thicknesses Obtained by Adjusting the Anodizing Duration and Pore Opening/Widening Time, Journal of Solid State Electrochemistry, 15, 2427 (2011). Doi: https://doi.org/10.1007/s10008-011-1471-z 
  43. S. M. Suchitra, P. R. Reddy, and N. K. Udayashankar, Effect of Pore Widening Time on the Structural Aspects of Self-Organized Nanopore Arrays Formed by Anodization of Aluminum in Chromic Acid, Materialstoday: Proceedings, 3, 2042 (2016). Doi: https://doi.org/10.1016/j.matpr.2016.04.107