References
- R. C. Newman, 2.05-Dealloying, Shreir's Corrosion, 2, 801 (2010). Doi: https://doi.org/10.1016/B978-044452787-5.00031-7
- R. W. Revie, H. H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed., pp.43 - 48, John Wiley & Sons, Inc., New York (2008). Doi: https://doi.org/10.1002/9780470277270
- C. D. S. Tuck, C.A. Powell, J. Nuttall, Corrosion of Copper and Its Alloys, Reference Module in Materials Science and Materials Engineering, pp. 443 - 470, Elsevier Inc., Amsterdam (2016). Doi: https://doi.org/10.1016/B978-0-12-803581-8.01634-9
- R. H. Abd alster, R. S.Yaseen and F. F. Sayyid, International Journal of Mechanical Engineering, Electrodeposition of Zinc from Galvanized Steel, Journal of University of Babylon for Engineering Sciences, 27, 394 (2019). Doi: https://doi.org/10.29196/jubes.v27i1.2189
- M. F. Abd, S. I. Jaafar, F. F. Sayyid, The effect of Immersion Period on the Dezincification Behavior of α -Brass Alloy Waste, International Journal of Mechanical Engineering, 7, 543 (2022). https://kalaharijournals.com/resources/61-80/IJME_Vol7.1_74.pdf
- T. S. Weisser, The De-alloying of Copper Alloys, Studies in Conservation, 20, 207 (1975). Doi: https://doi.org/10.1179/sic.1975.s1.035
- G. D. Walker, An SEM and Micro analytical Study of Inservice Dezincification of Brass, Corrosion, 33, 262 (1977). Doi: https://doi.org/10.5006/0010-9312-33.7.262
- J. Weissmuller, R. C. Newman, H. -J. Jin, A. M. Hodge and J. W. Kysar, Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties, MRS Bulletin, 34, 577 (2009). Doi: https://doi.org/10.1557/mrs2009.157
- J. Erlebacher, C. Newman, K. Sieradzki, Fundamental physics and chemistry of nanoporosity evolution during dealloying, In Nanoporous Gold FROMan Ancient Technology to a High-Tech Materia, pp. 11 - 29, RSC Nanoscience and Nanotechnology, Royal Society of Chemistry (2012). Doi: https://doi.org/10.1039/9781849735285-00011
- K. Ismail, Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions, Electrochimica Acta, 52, 7811 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.02.053
- S. Zaferani, M. Sharifi, D. Zaarei, and M. Shishesaz, Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes-A review, Journal of Environmental Chemical Engineering, 1 652 (2013). Doi https://doi.org/10.1016/j.jece.2013.09.019
- E. S. M. Sherif, R. M. Erasmus, and J. D. Comins, Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor, Corrosion Science, 50, 3439 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.10.002
- S. M. Milic and M. M. Antonijevic, Some aspects of copper corrosion in presence of benzotriazole and chloride ions, Corrosion Science, 51, 28 (2009). Doi: https://doi.org/10.1016/j.corsci.2008.10.007
- G. Abd El-Hafez and W. Badawy, The use of cysteine, N-acetyl cysteine and methionine as environmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloy in neutral chloride solutions, Electrochimica Acta, 108, 860 (2013). Doi https://doi.org/10.1016/j.electacta.2013.06.079
- Yaofu Zhang and Marc Edwards, Effects of pH, chloride, bicarbonate, and phosphate on brass dezincification, Journal - American Water Works Association, 103, 90 (2011). Doi: https://doi.org/10.1002/j.1551-8833.2011.tb11438.x=
- Oleg D. Neikov, N. A. Yefimov, Stanislav Naboychenko, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, 2nd ed., pp. 3 - 62, Elsevier (2019). Doi: https://doi.org/10.1016/B978-0-08-100543-9.00001-4
- Firas F. Sayyid, Ali M. Mustafa1, Mahdi M. Hanoon, Lina M. Shaker, and Ahmed A. Alamiery, Corrosion Protection Effectiveness and Adsorption Performance of Schiff Base-Quinazoline on Mild Steel in HCl Environment, Corrosion Science and Technology, 21, 77 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.77