DOI QR코드

DOI QR Code

ANALYSIS OF HILFER FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Saif Aldeen M. Jameel (Department of Computer Systems, Middle Technical University, Institute of Administration Rusafa-Baghdad) ;
  • Saja Abdul Rahman (Department Surveying Engineering, College of Engineering, University of Baghdad) ;
  • Ahmed A. Hamoud (Department of Mathematics, Taiz University)
  • Received : 2023.08.10
  • Accepted : 2023.10.15
  • Published : 2024.03.15

Abstract

In this manuscript, we study the sufficient conditions for existence and uniqueness results of solutions of impulsive Hilfer fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. Fractional calculus and Banach contraction theorem used to prove the uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.

Keywords

References

  1. Ayoob M. Abed, Muhammed F. Younis and Ahmed A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by Using MADM and VIM, Nonlinear Funct. Anal. Appl., 27(1) (2022), 189-201.
  2. A.T. Alabdala, A.J. Abdulqader, S.S. Redhwan and T.A. Aljaaidi, Existence and approximate solution for the fractional Volterra Fredholm integro-differential equation involving ς-Hilfer fractional derivative, Nonlinear Funct. Anal. Appl., 28(4) (2023), 989-1004.
  3. M. Alesemi, N. Iqbal and A.A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1-12. https://doi.org/10.1155/2022/2431533
  4. D. Baleanu, S. Etemad and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Boundary Value Prob., 2020(1) (2020), p. 64.
  5. K. Diethelm and A.D. Freed, On the solution of nonlinear fractional-order differential equation used in the modeling of viscoelasticity, In: F.keil, W.Mackens, H.Voss, J. Werther (Eds), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, (1999), 217-224.
  6. L.S. Dong, H. Van Ngo and H. Vu, Existence and Ulam stability for random fractional integro-differential equation, Afrika Matematika, 31 (2020), 1283-1294. https://doi.org/10.1007/s13370-020-00795-0
  7. A. Fernandez, S. Ali and Akbar Zada, On non-instantaneous impulsive fractional differential equations and their equivalent integral equations, Math. Meth. Appl. Sci., 2021 (2021), 1-10.
  8. A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4(4) (2020), 321-331. https://doi.org/10.31197/atnaa.799854
  9. A. Hamoud and K. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math., 60(3) (2018), 375-395. https://doi.org/10.12732/ijam.v31i3.3
  10. A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5(1) (2019), 58-69. https://doi.org/10.7862/rf.2018.9
  11. A. Hamoud and K. Ghadle, Some new results on nonlinear fractional iterative Volterra-Fredholm integro differential equations, TWMS J. Appl. Eng. Math., 12(4) (2022), 1283-1294. https://doi.org/10.5890/DNC.2023.12.013
  12. A. Hamoud, K. Ghadle, M. Bani Issa and Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31(3) (2018), 333-348. https://doi.org/10.12732/ijam.v31i3.3
  13. S. Harikrishnan, K. Shah, D. Baleanu and K. Kanagarajan, Note on the solution of random differential equations via φ-Hilfer fractional derivative, Adv. Di. equ., 224 (2018), 1-16. https://doi.org/10.1186/s13662-018-1678-8
  14. K. Hilal and A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Diff. Equ., article No. 183, 2015(1) (2015).
  15. K. Ivaz, I. Alasadi and A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG Int. J. Appl. Math., 52(2) (2022), 426-431.
  16. K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima, D. Tamizharasan and T. Sitthiwirattham, Existence results for impulsive fractional differential equations involving integral boundary conditions, Math. Prob. Eng., 2022 (2022), 1-12, Article ID 6599849.
  17. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  18. V. Lakshmikantham and D.J. Vasundhara, Theory of fractional differential equations in Banach space, Eur. J. Pure Appl. Math., 1(45) (2008), 38-45.
  19. V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69(8) (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
  20. T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86-94. https://doi.org/10.1007/s00033-019-1130-2
  21. Z. Lv, I. Ahmad, J. Xu and Akbar Zada, Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-strips-type Integral Boundary Conditions and Impulses, Fractal and Fractional, 15 (2022), 1-14.
  22. M.M. Matar, M.I. Abbas, J. Alzabut, M.K.A. Kaabar, S. Etemad and S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Diff. Equ., 2021(1) (2021), Article No. 68.
  23. K. Miller and B. Ross, Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  24. H. Mohammadi, S. Kumar, S. Rezapour and S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos, Solitons & Fractals, 144 (2021), Article ID 110668.
  25. K. Nouri, D. Baleanu and L. Torkzadeh, Study on application of hybrid functions to fractional diferential equations, Iranian J. Sci. Tech. Tran. A-Science, 42(3) (2018), 1343-1350. https://doi.org/10.1007/s40995-017-0224-y
  26. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations and Applications, Academic Press, New York, 1998.
  27. M. Rahimy, Applications of fractional differential equations, Appl. Math. Sci., 4(50) (2010), 2453-2461.
  28. N.H. Tuan, D. Baleanu, T.N. Tach, D. O'Regan and N.H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math.,, 376 (2020), 876-883. https://doi.org/10.1016/j.cam.2020.112883
  29. H. Vu and H. Van Ngo, On initial value problem of random fractional differential equation with impulsive, Hace. J. Math. Stat., 49(1) (2019), 282-293. https://doi.org/10.15672/hujms.546989
  30. V. Wattanakejorn, P. Karthikeyann, S. Poornima, K. Karthikeyan and T. Sitthiwirattham, Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions, Axioms, 11 (2022), Article No. 611.
  31. A. Zada, U. Riaz and F. Khan, Hyers-Ulam stability of impulsive integral equations, Boll. Un. Mat. Ital., 12(3) (2019), 453-467. https://doi.org/10.1007/s40574-018-0180-2