DOI QR코드

DOI QR Code

Oversea & Domestic Case Studies on Excavation Damaged Zone for Deep Geological Repository for Spent Nuclear Fuel

사용후핵연료 심층 처분장을 위한 국내외 굴착손상영역 사례연구

  • Jeonghwan Yoon (Department of Energy Systems Engineering, Seoul National University) ;
  • Ki-Bok Min (Department of Energy Systems Engineering, Seoul National University) ;
  • Sangki Kwon (Department of Energy Resource Engineering, Inha University) ;
  • Myung Kyu Song (Department of Earth Resources & Environmental Engineering, Hanyang University) ;
  • Sean Seungwon Lee (Department of Earth Resources & Environmental Engineering, Hanyang University) ;
  • Tae Young Ko (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Hoyoung Jeong (Department of Energy Resources Engineering, Pukyong National University) ;
  • Youngjin Shin (R&D center, Hyundai Engineering and Construction) ;
  • Jaehoon Jung (R&D center, Hyundai Engineering and Construction) ;
  • Juhyi Yim (R&D center, Hyundai Engineering and Construction)
  • 윤정환 (서울대학교 에너지시스템공학부) ;
  • 민기복 (서울대학교 에너지시스템공학부) ;
  • 권상기 (인하대학교 에너지자원공학과) ;
  • 송명규 (한양대학교 자원환경공학과) ;
  • 이승원 (한양대학교 자원환경공학과) ;
  • 고태영 (강원대학교 에너지자원.산업공학부 에너지자원공학전공) ;
  • 정호영 (부경대학교 에너지자원공학과) ;
  • 신영진 (현대건설 기술연구원) ;
  • 정재훈 (현대건설 기술연구원) ;
  • 임주휘 (현대건설 기술연구원)
  • Received : 2023.12.06
  • Accepted : 2023.12.15
  • Published : 2024.02.29

Abstract

In this case study, detailed survey of the Excavation Damaged Zone (EDZ) evaluation for the deep geological repository for high level nuclear waste was conducted. Oversea and Domestic case studies were compiled and investigated. EDZ is considered a crucial factor in the performance assessment of spent fuel disposal, leading to numerous studies worldwide aiming to understand the characteristics of the EDZ and quantitatively assessment of its extent through field and laboratory tests at Underground Research Laboratory (URL) sites. To enhance the understanding of EDZ, this study begins with defining and exploring the history of EDZ, compiling factors influencing EDZ, and summarizing the impacts caused by EDZ. Subsequently, an analysis of EDZ and rock properties is performed, followed by presenting generalized outcomes, limitations drawn from previous research, and proposing future research directions.

본 사례연구에서는 사용후핵연료 처분장 건설을 위한 굴착손상영역(EDZ) 평가 및 국내외 실증연구사례를 정리하고 조사하였다. 굴착손상영역은 사용후핵연료 처분장의 성능평가에 중요한 요소로 간주되며, 국내외 여러 국가에서 지하 연구시설 현장 및 실험실 시험을 통해 굴착손상영역의 특성 파악 및 그 범위를 정량적으로 판단하고자 하는 연구들이 수행되어왔다. 굴착손상영역에 대한 이해를 위하여 굴착손상영역의 정의, 역사를 시작으로 굴착손상영역에 영향을 주는 요인과 굴착손상영역으로 인한 영향을 정리하였다. 다음으로 굴착손상영역과 암반 특성에 관한 분석을 수행하였으며, 선행연구를 통해 도출한 일반화된 요약과 한계점, 향후 연구 방향을 제시하였다.

Keywords

References

  1. Andersson, J.C., 2007, Aspo pillar stability experiment: final report: rock mass response to coupled mechanical thermal loading, SKB TR-07-01, Svensk Karnbranslehantering AB, Stockholm.
  2. Autio, J., 1996, Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the research tunnel at Olkilouto. Posiva-96-09, Posiva, Helsinki.
  3. Autio, J., Gribi, P., Johnson, L., and Marschall, P., 2006, Effect of excavation damaged zone on gas migration in a KBS3H type repository at Olkilouto, Physics and Chemistry of the Earth, 31, 649-653. https://doi.org/10.1016/j.pce.2006.04.016
  4. Autio, J., Hjerpe, T., and Siitai-Kauppi, M., 2005, Porosity, diffusivity and permeability of EDZ in crystaline rock and effect on the migration in a KBS-3 type repository. In EU, 200, Impact of excavation distubed or damaged zone (EDZ) on the performance of radioactive waste geological repositories, Proc. European Commission Cluster Conference and Workshop, pp. 149-155.
  5. Backblom, G. and Martin, C.D., 1999, Recent experiments in hard rocks to study the excavation response: Implications for the performance of a nuclear waste geological reposito-ry, Tunn. Undergr. Space Technol., 14(3), 377-394. https://doi.org/10.1016/S0886-7798(99)00053-X
  6. Backblom, G., 2008, Excavation damage and disturbance in crystalline rock - Results from experiments and analyses, SKB TR08-08, Svensk Karnbranslehantering AB, Stockholm.
  7. Bossart, P., Meier, P.M., Moeri, A., Tric, T., and Mayor, J., 2002, Geological and hydraulic characterisation of the excavation disturbed zone in Opalinus Clay of the Mont Terri Rock Laboratory, Eng. Geol., 66, 19-38. https://doi.org/10.1016/S0013-7952(01)00140-5
  8. Bossart, P., Tric, T., Meier, P.M., and Mayor, J., 2004, Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland), Appl. Clay Sci., 26, 429-448. https://doi.org/10.1016/j.clay.2003.12.018
  9. Chandler, N.A., Cournut, A., Dixon, D.A., Fairhurst, C., Hansen, F., Gray, M., Hara, K., Ishijima, Y., Kozak, E., Martino, J., Matsumito, K., McCrank, G., Sugita, Y., Thompson, P., Tillerson, J., and Vignal, B., 2002, The five-year report of the Tunnel Sealing Experiment: An international project of AECL, JNC, ANDRA and WIPP, Atomic Energy of Canada Limited Report AECL-12727, ChalkRiver, Canada
  10. Chandler, N.A., Kozak, E.T., and Martin, C.D., 1996, Connected pathways in the EDZ and the potential for flow along tunnels. In: Martino, J. B., Martin, C. D., (Eds), Proceedings of Canadian Nuclear Society.
  11. Cho, W.J., Kim, J.S., and Kim, G.Y., 2019, Effects of excavation damaged zone on thermal analysis of multi-layer geological repository, J. Nucl. Fuel Cycle Waste Technol., 17(1), 75-94. https://doi.org/10.7733/jnfcwt.2019.17.1.75
  12. Eitzenberger, A., 2012, Wave Propagation in Rock and the Influence of Discontinuities. PhD Thesis. Lulea tekniska universitet, Lulea, Sweden.
  13. Emsley, S., Olsson, O., Stenberg, L., Alheid, H.J., and Falls, S., 1997, ZEDEX - a study of damage and disturbance from tun-nel excavation by blasting and tunnel boring, SKB TR 97-30, Svensk Karnbranslehantering AB, Stockholm.
  14. Enescu, N., Cosma, C., and Crawford, J., 2014, ONKALO 3D tunnel seismic investigations, Olkiluoto 2013, POSIVA-WR-14-49, Posiva Oy.
  15. Fairhurst, C., 1999, Rock mechanics and nuclear waste repositories, Proceedings of the International Workshop on the Rock Mechanics of Nuclear Waste Repositories, American Rock Mechanics Association, pp 1-44.
  16. Fairhurst, C., Gera, F., Gnirk, P., Gray, M., and Stillborg, B., 1993, OECD/NEA International Stripa Project 1980-1992. Overview Volume I, Executive Summary, Svensk Karnbranslehantering AB, Stockholm.
  17. Gray, M., 1993, OECD/NEA International Stripa Project 1980-1992, Overview III, Engineered Barriers, Svensk Karnbranslehantering AB, Stockholm.
  18. Hansen, F.D,, 2003, The Disturbed Rock Zone at the Waste Isolation Pilot Plant, SAND2003-3407, Sandia National Laboratories, Albuquerque NM USA.
  19. Hoek, E. and Diederichs, M.S., 2006, Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  20. Hudson, J.A. and Harrison, J.P., 2000, Engineering rock mechanics: an introduction to the principles, Elsevier.
  21. Hudson, J.A., Backstrom, A., Rutqvist, J., Jing, L., Backers, T., Chijimatsu, M., Christiansson, R., Feng, X.T., Kobayashi, A., Koyama, T., Lee, H.S., Neretnieks, I., Pan, P.Z., Rinne, M., and Shen, B.T., 2009, Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal, Environ. Geol., 57(6), 1275-1297. https://doi.org/10.1007/s00254-008-1554-z
  22. Kim, D. and Jeong, S., 2021, Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis, Geomech. Eng., 24(4), 323-335.
  23. Kwon, S. and Cho, W.J., 2008, The influence of an excavation damaged zone on the thermal-mechanical and hydro- mechanical behaviors of an underground excavation, Eng. Geol., 101, 110-123. https://doi.org/10.1016/j.enggeo.2008.04.004
  24. Lee, C.S., Kwon, S.K., Choi, J.W., and Jeon, S,. 2011, An estimation of the excavation damaged zone at the KAERI underground research tunnel, Tunnel & Underground Space, 21(5), 359-369.
  25. Malmgren, L., Saiang, D., Toyra, J., and Bodare, A., 2007, The ex-cavation disturbed zone (EDZ) at Kiirunavaara mine, Eng. Geol., 61, 1-15. https://doi.org/10.1016/j.jappgeo.2006.04.004
  26. Marschall, P., Fein, E., Kull, H., Lanyon, G.W., Liedtke, L., Muller-Lyda, H., Shao, 1999, Conclusions of the Tunnel Near-Field Programme (CTN), Nagra TR 99-07, Nagra, Wettingen, Switzerland.
  27. Martin, C.D., Kaiser, P.K., and McCreath, D.R., 1999, Hoek-Brown parameters for predicting the depth of brittle failure around tunnels, Can. Geotech. J., 36(1), 136-151. https://doi.org/10.1139/t98-072
  28. Martino, J.B. and Chandler, N.A., 2004, Excavation-induced damage studies at the underground research laboratory, Int. J. Rock Mech. Min. Sci., 41(8), 1413-1426. https://doi.org/10.1016/j.ijrmms.2004.09.010
  29. Matsui, H., Kurikami, H., Kunimaru, T., Morioka, H., and Hatanaka, K., 2007, Horonobe URL project - present status and future plans. In: Eberhardt, E., Stead, D., Morrison, T. (Eds.), Rock Mechanics: Meeting Society's Challenges and Demands, Taylor & Francis Group, London, pp. 1193-1201.
  30. Matsui, H., Sato, T., Sugihara, K., and Kikuchi, T., 1998, Overview of the EDE(Excavation Disturbance Experiment)-II at Kamaishi mine, Kamaishi Int. Workshop Proc., 24-25 Aug. 1998. PNCTN7413 98-023. JNC, Tokyo.
  31. Matsui, H., Sugihara, K., and Sato, T., 2003, In-situ experiments on excavation disturbance in JNC's Geoscientific Research Programme. Impact of the excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories, Proceedings Euopean Commission CLUSTER Conference and Workshop on EDZ in Radioactive Waste Geological Repositories, ENRESA
  32. Minaeian, B. and Ahangari, K., 2013, Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method, Arab. J. Geosci., 6, 1925-1931. https://doi.org/10.1007/s12517-011-0460-y
  33. Olsson, M., Markstroem, I., Pettersson, A., and Straeng, M., 2009, Examination of the Excavation Damaged Zone in the TASS tunnel, Aespoe HRL, SKB TR-09-39, Svensk Karnbranslehantering AB, Stockholm.
  34. Olsson, O.L. and Winberg, A., 1996, Current understanding of extent and properties of the excavation disturbed zone and its dependence of excavation method. In: Martino, J. B., Martin, C.D. (Eds.), Proceedings of the International Conference on Deep Geological Disposal of Radioactive Waste, pp. 101-112.
  35. Park, S. and Kwon, S., 2017, Status of researches of excavation damaged zone in foreign underground research laboratories constructed for developing high-level radioactive waste disposal techniques, Explosives and Blasting, 35(3), 31-54.
  36. Perras, M.A. and Diederichs, M.S., 2016, Predicting excavation damage zone depths in brittle rocks, J. Rock Mech. and Geotech. Eng., 8, 60-74. https://doi.org/10.1016/j.jrmge.2015.11.004
  37. Read, R.S. and Martin, C.D., 1996, Technical summary of AECL's Mine-By Experiment. Phase 1: Excavation Responses, AECL-11311, CoG-95-171. AECL, Pinawa, Canada.
  38. Saiang, D., 2011, Blast-Induced Damaged Zone Studies Final Report to Trafikverket, Division of Mining and Geotechnical Engineering Lulea University of Technology Sweden.
  39. Sato, T., Kikuchi, T., and Sugihara, K., 2000, In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan, Eng. Geol., 56, 97-108. https://doi.org/10.1016/S0013-7952(99)00136-2
  40. Siren, T., Kantia, P., and Rinne, M., 2015, Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock, Int. J. Rock Mech. Min. Sci., 73, 165-174. https://doi.org/10.1016/j.ijrmms.2014.11.001
  41. SKB, 1999, SR 97 - Deep repository for spent nuclear fuel, SR 97 - Post-closure safety. Main report - Vol. I, Vol. II and Summary, SKB TR-99-06, Svensk Karnbranslehantering AB, Stockholm.
  42. Stephansson, O., 1999, Rock mechanics and rock engineering of spent nuclear fuel and radioactive waste repositories in Sweden, Proceedings of the International Workshop on the Rock Mechanics of Nuclear Waste Repositories, America Rock Mechanics Association, pp. 205-227.
  43. Sugihara, K., Yoshioka, H., Matsui, H., and Sato, T., 1993, Preliminary results of a study on the responses of sedimentary rocks to shaft excavation, Eng. Geol., 35, 223-228. https://doi.org/10.1016/0013-7952(93)90010-A
  44. Tsang, C.F., Bernier, F., and Davies, C, 2005, Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays in the context of radioactive waste disposal, Int. J. Rock Mech. Min. Sci., 42(1), 109-125. https://doi.org/10.1016/j.ijrmms.2004.08.003
  45. Wang, J., Chen, L., Su, R., and Zhao, X., 2018, The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests, J. Rock Mech. and Geotech. Eng., 10, 411-435. https://doi.org/10.1016/j.jrmge.2018.03.002