DOI QR코드

DOI QR Code

가스 질화를 통한 316L스테인리스강의 내식성 개선

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding

  • 조현빈 (부경대학교 금속공학과) ;
  • 박세림 (부경대학교 금속공학과) ;
  • 김지수 (부경대학교 금속공학과) ;
  • 이정훈 (부경대학교 금속공학과)
  • Hyunbin Jo (Department of Metallurgical Engineering, Pukyong National University) ;
  • Serim Park (Department of Metallurgical Engineering, Pukyong National University) ;
  • Jisu Kim (Department of Metallurgical Engineering, Pukyong National University) ;
  • Junghoon Lee (Department of Metallurgical Engineering, Pukyong National University)
  • 투고 : 2023.11.01
  • 심사 : 2023.11.26
  • 발행 : 2024.02.29

초록

오스테나이트계 스테인리스강은 내식성 및 성형성이 양호하여 다양한 분야에 적용되며, 구리계의 합금을 용가재로 하는 브레이징을 통하여 다양한 형상의 제품으로 가공되어 활용되고 있다. 이때, 구리 기반의 용가재와 스테인리스강의 계면에서 갈바닉 셀을 형성하여 부식을 촉진할 수 있으며, 확산을 통해 스테인리스강에 고용 시 형성되는 구리 과다 영역(Cu-rich region)은 공식 발생의 기점이 되어 내식성을 저하시킨다. 본 연구에서는 브레이징이 적용된 스테인리스강의 내식성을 개선하고자, AISI 316L 스테인리스강에 암모니아 가스를 이용한 질화처리를 적용하였다. 질화처리한 시편은 처리 온도가 증가함에 따라 두께가 증가하고 표면 경도가 높아졌다. 동전위분극시험을 통해 내식성을 평가한 결과 질화층 내 고용된 질소의 용출 및 부동태 거동으로 모재대비 내식성이 개선되었지만 처리온도가 높아 크롬질화물(CrN) 분율이 증가하는 경우 내식성이 감소하였다.

Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.

키워드

참고문헌

  1. S. Wang, J. Li, Y. Cao, B. Gao, Q. Mao, and Y. Li, Thermal stability and tensile property of 316L stainless steel with heterogeneous lamella structure, Vacuum, 152, 261-264 (2018). https://doi.org/10.1016/j.vacuum.2018.03.040
  2. W. Zhu, H. Zhang, C. Guo, Y. Liu, and X. Ran, Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag-Cu filler, Vacuum, 166, 97-106 (2019). https://doi.org/10.1016/j.vacuum.2019.04.064
  3. F. Silze, G. Wiehl, I. Kaban, H. Wendrock, T. Gemming, U. Kuhn, J. Eckert, and S. Pauly, Wetting behaviour of Cu-Ga alloys on 304L steel, Mater. Des., 91, 11-18 (2016). https://doi.org/10.1016/j.matdes.2015.11.034
  4. A. Kvryan, K. Livingston, C. M. Efaw, K. Knori, B. J. Jaques, P. H. Davis, D. P. Butt, and M. F. Hurley, Microgalvanic corrosion behavior of Cu-Ag active braze alloys investigated with SKPFM, Metals, 6(4), 91 (2016).
  5. M. M. Atabaki, J. N. Wati, and J. Idris, Transient liquid phase diffusion brazing of stainless steel 304, Weld. J., 92, 57-63 (2013).
  6. A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions, Corros. Sci., 48(6), 1513-1527 (2006). https://doi.org/10.1016/j.corsci.2005.06.006
  7. O. Gokcekaya, C. Ergun, T. Gulmez, T. Nakano, and S. Yilmaz, Structural characterization of ion nitrided 316L austenitic stainless steel: Influence of treatment temperature and time, Metals, 12(2), 306 (2022).
  8. P. Kochmanski and J. Nowacki, Activated gas nitriding of 17-4 PH stainless steel, Surf. Coat. Technol., 200(22-23), 6558-6562 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.034
  9. N. D. Nam, N. A. Xuan, N. V. Bach, L. T. Nhung, and L. T. Chieu, Control gas nitriding process: A review, J. Mech. Eng. Res. Dev., 42(1), 17-25 (2019).
  10. T. Christiansen, K. V. Dahl, and M. A. J. Somers, Nitrogen diffusion and nitrogen depth profiles in expanded austenite: experimental assessment, numerical simulation and role of stress, Mater. Sci. Technol., 24(2), 159-167 (2008). https://doi.org/10.1179/026708307X232901
  11. T. Christiansen and M. A. J. Somers, Low temperature gaseous nitriding and carburising of stainless steel, Surf. Eng., 21(5-6), 445-455 (2005). https://doi.org/10.1179/174329405X68597
  12. J. Baranowska and B. Arnold, Corrosion resistance of nitrided layers on austenitic steel, Surf. Coat. Technol., 200(22-23), 6623-6628 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.099
  13. Y. Sun, X. Y. Li, and T. Bell, X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels, J. Mater. Sci., 34, 4793-4802 (1999). https://doi.org/10.1023/A:1004647423860
  14. A. Martinavicius, G. Abrasonis, A. C. Scheinost, R. Danoix, F. Danoix, J. C. Stinville, G. Talut, C. Templier, O. Liedke, S. Gemming, and W. Moller, Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel, Acta Materialia, 60(10), 4065-4076 (2012). https://doi.org/10.1016/j.actamat.2012.04.014
  15. W. Xie, Y. Chen, D. Chen, Y. Yang, C. Zhang, G. Cui, and Y. Wang, Low-pressure gas nitriding of AISI 304 austenitic stainless steel: Reducing the precipitation of chromium nitrides, Mater. Res. Express, 7(6), 066406 (2020).
  16. H. Baba, T. Kodama, and Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corros. Sci., 44(10), 2393-2407 (2002). https://doi.org/10.1016/S0010-938X(02)00040-9