DOI QR코드

DOI QR Code

종이 기반 전기화학 센서의 연구 동향

A Review on Paper-based Electrochemical Sensors

  • 서민지 (한국교원대학교 화학교육과)
  • Minjee Seo (Department of Chemistry Education, Korea National University of Education)
  • 투고 : 2024.01.15
  • 심사 : 2024.01.17
  • 발행 : 2024.02.29

초록

신체에 부착하는 웨어러블(wearable) 센서 및 현장 진단 검사(point-of-care testing)가 용이한 센서의 필요성이 부각되면서, 종이를 기반으로 하는 센서들이 활발히 연구되어왔다. 종이는 매우 저렴하면서도 가볍고 유연할 뿐만 아니라, 표면에 카본과 같은 전도성 물질 및 왁스와 같은 소수성 물질을 입히기 쉽다. 또한, 종이를 이루는 셀룰로오스 섬유에 의한 모세관 현상으로 외부 힘 없이 용액의 흐름을 유도할 수 있어 웨어러블 전기화학 센서의 플랫폼으로 특히 주목받고 있다. 이에 따라, 다양한 분석 물질들을 전기화학적인 방법으로 검출하는 종이 기반 센서들이 활발히 개발되어 왔다. 특히, 분석 물질에 따른 전류 값 이외에도, 전기화학 발광현상(electrochemiluminescence) 혹은 전기 변색 물질(electrochromic material)을 도입하여 시각적으로 데이터를 나타내는 센서들도 보고되어 왔다. 이 논문에서는 종이 기반 전기화학 센서들의 제작법 및 다양한 활용 전략을 사례 중심으로 소개하였다.

With the increasing demand for wearable sensors that are capable of point-of-care testing, paper-based sensors have been extensively studied. Paper is not only extremely cost-effective but also lightweight and flexible, and it is easy to apply conductive materials such as carbon and hydrophobic substances like wax to its surface. Moreover, the capillary action caused by cellulose fibers in paper allows the flow of liquid without help from external forces, making paper a particularly promising platform for wearable electrochemical sensors. Accordingly, paper-based sensors for detecting various analytes through electrochemical methods have been actively developed. Recently, paper-based electrochemical sensors that utilize electrochemiluminescence (ECL) or electrochromic materials for the optical read-out have been reported. This review introduces the basic fabrication methods and various application strategies of paper-based electrochemical sensors.

키워드

참고문헌

  1. E. Noviana, C. P. McCord, K. M. Clark, I. Jang, and C. S. Henry, Electrochemical paper-based devices: sensing approaches and progress toward practical applications, Lab Chip, 20(1), 9 (2019).
  2. Y. Sun, Q.-Y. Jiang, F. Chen, and Y. Cao, Paper-based electrochemical sensor, Electrochem. Sci. Adv., 2, e2100057 (2022).
  3. P. B. Deroco, D. Wachholz Junior, and L. T. Kubota, Paper-based wearable electrochemical sensors: A new generation of analytical devices, Electroanalysis, 35(1), e202200177 (2023).
  4. E. Noviana and C. S. Henry, Simultaneous electrochemical detection in paper-based analytical devices, Curr. Opin. Electrochem., 23, 1-6 (2020). https://doi.org/10.1016/j.coelec.2020.02.013
  5. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Ed., 46(8), 1318-1320 (2007). https://doi.org/10.1002/anie.200603817
  6. G. G. Morbioli, T. Mazzu-Nascimento, A. M. Stockton, and E. Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review, Anal. Chim. Acta, 970, 1-22 (2017). https://doi.org/10.1016/j.aca.2017.03.037
  7. L. Su, L. Yang, Q. Sun, T. Zhao, B. Liu, C. Jiang, and Z. Zhang, A ratiometric fluorescent paper sensor for consecutive color change-based visual determination of blood glucose in serum, New J. Chem., 42(9), 6867-6872 (2018). https://doi.org/10.1039/C8NJ00502H
  8. J. R. Windmiller and J. Wang, Wearable electrochemical sensors and biosensors: A review, Electroanalysis, 25(1), 29-46 (2013). https://doi.org/10.1002/elan.201200349
  9. W. Dungchai, O. Chailapakul, and C. S. Henry, Electrochemical detection for paper-based microfluidics, Anal. Chem., 81(14), 5821-5826 (2009). https://doi.org/10.1021/ac9007573
  10. N. Colozza, K. Kehe, G. Dionisi, T. Popp, A. Tsoutsoulopoulos, D. Steinritz, D. Moscone, and F. Arduini, A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection, Biosens. Bioelectron., 129, 15-23 (2019). https://doi.org/10.1016/j.bios.2019.01.002
  11. P. K. Sekhar, and J. S. Kysar, An electrochemical ammonia sensor on paper substrate, J. Electrochem. Soc., 164(4), B113 (2017).
  12. T. Kant, K. Shrivas, K. Tapadia, R. Devi, V. Ganesan, and K. M. Deb, Inkjet-printed paper-based electrochemical sensor with gold nano-ink for detection of glucose in blood serum, New J. Chem., 45(18), 8297-8305 (2021). https://doi.org/10.1039/D1NJ00771H
  13. O. Amor-Gutierrez, E. Costa Rama, A. Costa-Garcia, and M. T. Fernandez-Abedul, Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes, Biosens. Bioelectron., 93, 40-45 (2017). https://doi.org/10.1016/j.bios.2016.11.008
  14. W. Li, D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, and C. Yu, Fully-drawn origami paper analytical device for electrochemical detection of glucose, Sens. Actuators B Chem., 231, 230-238 (2016). https://doi.org/10.1016/j.snb.2016.03.031
  15. W. R. de Araujo, C. M. R. Frasson, W. A. Ameku, J. R. Silva, L. Angnes, and T. R. L. C. Paixao, Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices, Angew. Chem. Int. Ed., 56(47), 15113-15117 (2017). https://doi.org/10.1002/anie.201708527
  16. T. Pinheiro, S. Silvestre, J. Coelho, A. C. Marques, R. Martins, M. G. F. Sales, and E. Fortunato, Laser-induced graphene on paper toward efficient fabrication of flexible, planar electrodes for electrochemical sensing, Adv. Mater. Interfaces, 8(22), 2101502 (2021).
  17. B. Perez-Fernandez, A. Costa-Garcia, and A. de la Escosura-Muniz, Electrochemical (bio)sensors for pesticides detection using screen-printed electrodes, Biosensors, 10(4), 32 (2020).
  18. T. H. da Costa, E. Song, R. P. Tortorich, and J.-W. Choi, A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes, ECS J. Solid State Sci. Technol., 4, S3044 (2015). https://doi.org/10.1149/2.0121510jss
  19. N. Ruecha, O. Chailapakul, K. Suzuki, and D. Citterio, Fully inkjet-printed paper-based potentiometric ion-sensing devices, Anal. Chem., 89(19), 10608-10616 (2017). https://doi.org/10.1021/acs.analchem.7b03177
  20. N. Dossi, R. Toniolo, A. Pizzariello, F. Impellizzieri, E. Piccin, and G. Bontempelli, Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices, Electrophoresis, 34(14), 2085-2091 (2013). https://doi.org/10.1002/elps.201200425
  21. Z. Li, H. Liu, X. He, F. Xu, F. Li, Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor, Biosens. Bioelectron., 98, 478-485 (2017). https://doi.org/10.1016/j.bios.2017.06.061
  22. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. Yacaman, B. I. Yakobson, and J. M. Tour, Laser-induced porous graphene films from commercial polymers, Nat. Commun., 5, 5714 (2014).
  23. R. Ye, D. K. James, and J. M. Tour, Laser-induced graphene: From discovery to translation, Adv. Mater., 31(1), 1803621 (2019).
  24. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Understanding wax printing: A simple micropatterning process for paper-based microfluidics, Anal. Chem., 81(16), 7091-7095 (2009). https://doi.org/10.1021/ac901071p
  25. A. Murphy, B. Gorey, K. de Guzman, N. Kelly, E. P. Nesterenko, and A. Morrin, Microfluidic paper analytical device for the chromatographic separation of ascorbic acid and dopamine, RSC Adv., 5(113), 93162-93169 (2015). https://doi.org/10.1039/C5RA16272F
  26. K. Kunpatee, K. Kalcher, O. Chailapakul, S. Chaiyo, and A. Samphao, A paper chromatographic-based electrochemical analytical device for the separation and simultaneous detection of carbofuran and carbaryl pesticides, Sens. Actuators B Chem., 377, 133116 (2023).
  27. A. Yakoh, S. Chaiyo, W. Siangproh, and O. Chailapakul, 3D Capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications, ACS Sens., 4(5), 1211-1221 (2019). https://doi.org/10.1021/acssensors.8b01574
  28. Q. Cao, B. Liang, T. Tu, J. Wei, L. Fang, and X. Ye, Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection, RSC Adv., 9(10), 5674-5681 (2019). https://doi.org/10.1039/C8RA09157A
  29. R. Liu, C. Zhang, and M. Liu, Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics, Sens. Actuators B Chem., 216, 255-262 (2015). https://doi.org/10.1016/j.snb.2015.04.014
  30. X., Zhang and S.-N. Ding, Graphite paper-based bipolar electrode electrochemiluminescence sensing platform, Biosens. Bioelectron., 94, 47-55 (2017). https://doi.org/10.1016/j.bios.2017.02.033
  31. X. Sun, B. Li, C. Tian, F. Yu, N. Zhou, Y. Zhan, and L. Chen, Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers, Anal. Chim. Acta, 1007, 33-39 (2018). https://doi.org/10.1016/j.aca.2017.12.005
  32. H. Liu, X. Zhou, W. Liu, X. Yang, and D. Xing, Paperbased bipolar electrode electrochemiluminescence switch for label-free and sensitive genetic detection of pathogenic bacteria, Anal. Chem., 88(20), 10191-10197 (2016). https://doi.org/10.1021/acs.analchem.6b02772
  33. J. Xu, Y. Zhang, L. Li, Q. Kong, L. Zhang, S. Ge, and J. Yu, Colorimetric and electrochemiluminescence dual-mode sensing of lead ion based on integrated lab-on-paper device, ACS Appl. Mater. Interfaces, 10(4), 3431-3440 (2018). https://doi.org/10.1021/acsami.7b18542
  34. F. Wang, C. Fu, C. Huang, N. Li, Y. Wang, S. Ge, and J. Yu, Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155, Biosens. Bioelectron., 150, 111917 (2020).
  35. A. Ahmadi, S. M. Khoshfetrat, S. Kabiri, P. S. Dorraji, B. Larijani, and K. Omidfar, Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters, Microchim. Acta, 188, 296 (2021).
  36. D. D., Liana, B. Raguse, J. J. Gooding, and E. Chow, Toward paper-based sensors: Turning electrical signals into an optical readout system, ACS Appl. Mater. Interfaces, 7(34), 19201-19209 (2015). https://doi.org/10.1021/acsami.5b04941
  37. S. Y. Yeon, M. Seo, Y. Kim, H. Hong, and T. D. Chung, Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout, Biosens. Bioelectron., 203, 114002 (2022).
  38. E. Rafatmah and B. Hemmateenejad, Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry, Microchim. Acta, 186, 684 (2019).
  39. M. Seo, Recent advances in electrochromic sensors, J. Korean Electrochem. Soc., 25(4), 125-133 (2022).
  40. C.-C. Wang, J. W. Hennek, A. Ainla, A. A. Kumar, W.-J. Lan, J. Im, B. S. Smith, M. Zhao, and G. M. Whitesides, A paper-based "Pop-up" electrochemical device for analysis of beta-hydroxybutyrate, Anal. Chem., 88(12), 6326-6333 (2016). https://doi.org/10.1021/acs.analchem.6b00568
  41. P. Teengam, W. Siangproh, S. Tontisirin, A. Jirasereeamornkun, N. Chuaypen, P. Tangkijvanich, C. S. Henry, N. Ngamrojanavanich, and O. Chailapakul, NFCenabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection, Sens. Actuators B Chem., 326, 128825 (2021).