DOI QR코드

DOI QR Code

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh (Department of Physics and Astrophysics, Central University of Haryana) ;
  • Rungsima Yeetsorn (Materials and Production Engineering, The Sirindhorn International Thai–German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok) ;
  • Waritnan Wanchan (Materials and Production Engineering, The Sirindhorn International Thai–German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok) ;
  • Michael Fowler (Department of Chemical Engineering, University of Waterloo) ;
  • Kamlesh Yadav (Department of Physics, University of Allahabad) ;
  • Pankaj Koinkar (Department of Optical Science, Tokushima University)
  • Received : 2023.06.19
  • Accepted : 2023.10.16
  • Published : 2024.02.29

Abstract

Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

Keywords

Acknowledgement

The authors sincerely thank King Mongkut's University of Technology North Bangkok, Thailand, for funding this research work under the Postdoctoral Program (Grant No. KMUTNB-POST-66-09, KMUTNB-64-KNOW-08).

References

  1. S. Basri, S. K. Kamarudin, W. R. W. Daud, and Z. Yaakub, Int. J. Hydrogen Energy, 2010, 35(15), 7957-7970.  https://doi.org/10.1016/j.ijhydene.2010.05.111
  2. A. B. Anderson, E. Grantscharova, and S. Seong, J. Electrochem. Soc., 1996, 143(6), 2075-2082.  https://doi.org/10.1149/1.1836952
  3. R. Yeetsorn, W. P. Ouajai, and K. Onyu, RSC Adv., 2020, 10, 24330-24342.  https://doi.org/10.1039/D0RA00461H
  4. R. Yeetsorn, Y. Maiket, and W. Kaewmanee, RSC Adv., 2020, 10, 13100-13111.  https://doi.org/10.1039/D0RA00468E
  5. D. M. Fadzillah, S. K. Kamarudin, M. A. Zainoodin, and M. S. Masdar, Int. J. Hydrogen Energy, 2019, 44(5), 3031-3054.  https://doi.org/10.1016/j.ijhydene.2018.11.089
  6. M. Bowker, A. F. Carley, and M. House, Catal. Lett., 2008, 120(1-2), 34-39.  https://doi.org/10.1007/s10562-007-9255-x
  7. C.-W. Liu, Y.-W. Chang, Y.-C. Wei, and K.-W. Wang, Electrochim. Acta., 2011, 56(1), 2574-2581.  https://doi.org/10.1016/j.electacta.2010.11.013
  8. D. M. dos Anjos, K. B. Kokoh, J. M. Leger, A. R. D. Andrade, P. Olivi, and G. Tremiliosi-Filho, J. Appl. Electrochem., 2006, 36, 1391-1397.  https://doi.org/10.1007/s10800-006-9222-z
  9. B. Beden , C. Lamy, N. R. de Tacconi, and A. J. Arvia, Electrochim. Acta., 1990, 35(4), 691-704.  https://doi.org/10.1016/0013-4686(90)90002-H
  10. A. De, J. Datta, I. Haldar, and M. Biswas, ACS Appl. Mater. Interfaces, 2016, 8(42), 28574-28584.  https://doi.org/10.1021/acsami.6b07455
  11. A. Yuda, A. Ashok, and A. Kumar, Catal. Rev., 2022, 64(1), 126-228.  https://doi.org/10.1080/01614940.2020.1802811
  12. P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis, and J. Rossmeisl, Surf. Sci., 2008, 602, 3424-3431.  https://doi.org/10.1016/j.susc.2008.08.011
  13. P. Salarizadeh, M. B. Askari, and A. D. Bartolomeo, ACS Appl. Nano Mater., 2022, 5(3), 3361-3373.  https://doi.org/10.1021/acsanm.1c03946
  14. E. Lee, A. Murthy, and A. Manthiram, Electrochim. Acta, 2011, 56, 1611-1618.  https://doi.org/10.1016/j.electacta.2010.10.086
  15. Y. Wang, E. R. Fachini, G. Cruz, Y. Zhu, Y. Ishikawa, J. A. Colucci, and C. R. Cabrera, J. Electrochem. Soc., 2001, 148, C222. 
  16. S. Chen, F. Ye, and W. Lin, Int. J. Hydrogen Energy, 2010, 35(15), 8225-8233.  https://doi.org/10.1016/j.ijhydene.2009.12.085
  17. Y. Gan, H. Huang, and W.Zhang, Trans. Nonferrous Met. Soc. China, 2007, 17(1), 214-219.  https://doi.org/10.1016/S1003-6326(07)60074-0
  18. R. Vellacheri, S. M. Unni, S. Nahire, U. K. Kharul, and S. Kurungot, Electrochim. Acta, 2010, 55(8), 2878-2887.  https://doi.org/10.1016/j.electacta.2010.01.012
  19. O. Guillen-Villafuerte, G. Garcia, J. L. Rodriguez, E. Pastor, R. Guil-Lopez, E. Nieto, and J. L. G. Fierro, Int. J. Hydrogen Energy, 2013, 38(19), 7811-7821.  https://doi.org/10.1016/j.ijhydene.2013.04.083
  20. C. Song, M. Khanfar, and P. G. Pickup, J. Appl. Electrochem., 2006, 36, 339-345.  https://doi.org/10.1007/s10800-005-9071-1
  21. S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, ACS Appl. Mater. Interfaces, 2019, 11(13), 12504-12515.  https://doi.org/10.1021/acsami.9b00192
  22. R. Parsons and T. VanderNoot, J. Electroanal. Chem. Interfacial Electrochem., 1988, 257(1-2), 9-45.  https://doi.org/10.1016/0022-0728(88)87028-1
  23. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 2002, 47(22-23), 3681-3692.  https://doi.org/10.1016/S0013-4686(02)00338-9
  24. F. Yang, F. Li, Y. Wang, X. Chen, D. Xia, and J. Liu, J. Mol. Catal. A Chem., 2015, 400, 7-13.  https://doi.org/10.1016/j.molcata.2015.02.001
  25. M. K. Jeon, K. R. Lee, and S. I. Woo, Korean J. Chem. Eng., 2009, 26, 1028-1033.  https://doi.org/10.1007/s11814-009-0171-1
  26. B. N. Grgur, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B, 1998, 102(14), 2494-2501.  https://doi.org/10.1021/jp972692s
  27. A. B. Kashyout, A. B. A. A. Nassr, L. Giorgi, T. Maiyalagan, and B. A. B. Youssef, Int. J. Electrochem. Sci., 2011, 6, 379-393.  https://doi.org/10.1016/S1452-3981(23)15002-4
  28. S. Wu, J. Liu, Z. Tian, Y. Cai, Y. Ye, Q. Yuan, and C. Liang, ACS Appl. Mater. Interfaces, 2015, 7, 22935-22940.  https://doi.org/10.1021/acsami.5b06153
  29. L. Lai, G. Yang, Q. Zhang, H. Yu, and F. Peng, J. Power Sources, 2021, 509, 230397. 
  30. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B, 1997, 101, 3910-3913.  https://doi.org/10.1021/jp9704168
  31. S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, and E. S. De Castro, Electrochem. Solid-State Lett., 1999, 2(1), 12-15.  https://doi.org/10.1149/1.1390718
  32. H. Massong, H. Wang, G. Samjeske, and H. Baltruschat, Electrochim. Acta, 2001, 46(5), 701-707.  https://doi.org/10.1016/S0013-4686(00)00654-X
  33. A. Lima, C. Coutanceau, J. M. Leger, and C. Lamy, J. Appl. Electrochem., 2001, 31, 379-386.  https://doi.org/10.1023/A:1017578918569
  34. A. Oliveira Neto, E. G. Franco, E. Arico, M. Linardi, and E. R. Gonzalez, J. Eur. Ceram. Soc., 2003, 23(15), 2987-2992.  https://doi.org/10.1016/S0955-2219(03)00310-8
  35. J. M. Jaksic, L. M. Vracar, S. G. Neophytides, and N. V. Krstajic, Chem. Ind. Chem. Eng. Q., 2005, 11(3), 129-136.  https://doi.org/10.2298/CICEQ0503129J
  36. J. M. Jaksic, L. Vracar, S. G. Neophytides, S. Zafeiratos, G. Papakonstantinou, N. V. Krstajic, and M. M. Jaksic, Surf. Sci., 2005, 598(1-3), 156-173.  https://doi.org/10.1016/j.susc.2005.08.036
  37. S. Li, Y. Zhang, Y. Han, F. Lv, B. Liu, and L. Huo, Appl. Surf. Sci., 2022, 600, 154134. 
  38. C. V. Ramana, A. Mauger, and C. M. Julien, Prog. Cryst. Growth Charact. Mater., 2021, 67(3), 100533. 
  39. N. R. Elezovic, L. M. Gajic-Krstajic, L. M. Vracar, and N. V. Krstajic, Int. J. Hydrogen Energy, 2010, 35(23), 12878-12887.  https://doi.org/10.1016/j.ijhydene.2010.09.004
  40. M. B. Askari, P. Salarizadeh, M. Seifi, and S. M. Rozati, J. Phys. Chem. Solids, 2019, 135, 109103. 
  41. P. Basumatary, D. Konwar, and Y. S. Yoon, Appl. Catal. B Environ., 2020, 267, 118724. 
  42. A. Sharma, S. K. Mehta, S. Singh, and S. Gupta, J. Appl. Electrochem., 2016, 46(1), 27-38.  https://doi.org/10.1007/s10800-015-0900-6
  43. J. Huang, Z. Liu, C. He, and L. M. Gan, J. Phys. Chem. B, 2005, 109(35), 16644-16649.  https://doi.org/10.1021/jp052667j
  44. Y. Dai, K. Sun, and Y. Li, J. Electroanal. Chem., 2015, 757, 94-99.  https://doi.org/10.1016/j.jelechem.2015.09.020
  45. L. Ou and S. Chen, J. Electrochem., 2013, 19(1), 10. 
  46. F. Fathirad, A. Mostafavi, and D. Afzali, Int. J. Hydrogen Energy, 2017, 42, 3215-3221.  https://doi.org/10.1016/j.ijhydene.2016.09.138
  47. K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li, and J. Ye, Adv. Mater., 2016, 28(45), 10033-10041.  https://doi.org/10.1002/adma.201603765
  48. A. Gopalakrishnan, L. Durai, J. Ma, C. Y. Kong, and S. Badhulika, Energy Fuels, 2021, 35(12), 10169-10180.  https://doi.org/10.1021/acs.energyfuels.1c00957
  49. B. Tang, Y. Lv, J. Du, Y. Dai, S. Pan, Y. Xie, and J. Zou, ACS Sustain. Chem. Eng., 2019, 7(13), 11101-11109.  https://doi.org/10.1021/acssuschemeng.8b06855
  50. N. A. M. Barakat and M. A. Ali, Sci. Rep., 2022, 12, 22574. 
  51. S. Izhar and M. Nagai, Open Catal. J., 2013, 6, 37-40.  https://doi.org/10.2174/1876214X01306010037
  52. K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M. N. Banis, P. Zhang, F. Li, J. Li, and L. Chen, NPG Asia Mater., 2015, 7, e153. 
  53. Z. Yan, H. Wang, M. Zhang, Z. Jiang, T. Jiang, and J. Xie, Electrochim. Acta, 2013, 95, 218-224.  https://doi.org/10.1016/j.electacta.2013.02.031
  54. N. Kakati, J. Maiti, S. H. Lee, and Y. S. Yoon, Int. J. Hydrogen Energy, 2012, 37(24), 19055-19064.  https://doi.org/10.1016/j.ijhydene.2012.09.083
  55. Z.-P. Sun, X.-G. Zhang, Y.-Y. Liang, and H.-L. Li, Electrochem. Commun., 2009, 11(3), 557-561.  https://doi.org/10.1016/j.elecom.2008.12.049
  56. A. Miura, M. E. Tague, J. M. Gregoire, X.-D. Wen, R. B. van Dover, H. D. Abruna, and F. J. Disalvo, Mater. Chem., 2010, 22(11), 3451-3456.  https://doi.org/10.1021/cm100525e
  57. M. Gonzalez-Hernandez, E. Antolini, and J. Perez, Int. J. Hydrogen Energy, 2020, 45(8), 5276-5284.  https://doi.org/10.1016/j.ijhydene.2019.05.208
  58. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, J. Power Sources, 2008, 176(2), 444-451.  https://doi.org/10.1016/j.jpowsour.2007.08.053
  59. K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, J. Electrochem. Soc., 2004, 151(4), E125. 
  60. M. Li, J. Shi, X. Guo, Y. Ying, Y. Wu, Y. Wen, and H. Yang, J. Electroanal. Chem., 2023, 928, 117038. 
  61. N. Tsiouvaras, M. V. Martinez-Huerta, R. Moliner, M. J. Lazaro, J. L. Rodriguez, E. Pastor, M. A. Pena, and J. L. G. Fierro, J. Power Sources, 2009, 186(2), 299-304.  https://doi.org/10.1016/j.jpowsour.2008.10.026
  62. R. Yeetsorn, The Journal of KMITNB, 2004, 14(4), 60-64.  https://doi.org/10.1055/s-0029-1237777
  63. M. N. Groves, A. S. W. Chan, C. Malardier-Jugroot, and M. Jugroot, Chem. Phys. Lett., 2009, 481(4-6), 214-219.  https://doi.org/10.1016/j.cplett.2009.09.074
  64. R. I. Jafri, N. Rajalakshmi, K. S. Dhathathreyan, and S. Ramaprabhu, Int. J. Hydrogen Energy, 2015, 40(12), 4337-4348.  https://doi.org/10.1016/j.ijhydene.2015.02.008
  65. Q. Sun and S. Kim, Electrochim. Acta, 2015, 153, 566-573.  https://doi.org/10.1016/j.electacta.2014.11.077
  66. A. Heydari and H. Gharibi, J. Power Sources, 2016, 325, 808-815.  https://doi.org/10.1016/j.jpowsour.2016.06.039
  67. C. Zhai, M. Zhu, D. Bin, F. Ren, C. Wang, P. Yang, and Y. Du, J. Power Sources, 2015, 275, 483-488.  https://doi.org/10.1016/j.jpowsour.2014.11.030
  68. Y. Zhou, D. Liu, W. Qiao, Z. Liu, J. Yang, and L. Feng, Mater. Today Phys., 2021, 17, 100357. 
  69. Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu, and L. Zhuang, Energy Environ. Sci., 2015, 8(1), 177-181.  https://doi.org/10.1039/C4EE02564D
  70. S. Mukerjee and R. C. Urian, Electrochim. Acta, 2002, 47(19), 3219-3231.  https://doi.org/10.1016/S0013-4686(02)00242-6
  71. N. Tsiouvaras, M. V. Martinez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, and M. A. Pena, Int. J. Hydrogen Energy, 2010, 35(20), 11478-11488.  https://doi.org/10.1016/j.ijhydene.2010.06.053
  72. Z. Cui, M. Yang, and F. J. Di Salvo, Electrochem. Commun., 2013, 33, 63-67.  https://doi.org/10.1016/j.elecom.2013.04.017
  73. C.V. Rao and B. Viswanathan, Electrochim. Acta, 2010, 55(8), 3002-3007.  https://doi.org/10.1016/j.electacta.2009.12.094
  74. M. V. Martinez-Huerta, J. L. Rodriguez, N. Tsiouvaras, M. A. Pena, J. L. G. Fierro, and E. Pastor, Chem. Mater., 2008, 20(13), 4249-4259.  https://doi.org/10.1021/cm703047p
  75. T. Iwasita and F. C. Nart, J. Electroanal. Chem. Interfacial Electrochem., 1991, 317(1-2), 291-298.  https://doi.org/10.1016/0022-0728(91)85022-H
  76. P. W. Faguy, N. Markovic, and P. N. Ross, J. Electrochem. Soc., 1993, 140, 1638-1641.  https://doi.org/10.1149/1.2221615
  77. E. H. Fontes, R. M. Piasentin, J. M. S. Ayoub, J. C. M. da Silva, M. H. M. T. Assumpcao, E. V. Spinace, A. O. Neto, and R. F. B. de Souza, Mater. Renew. Sustain. Energy, 2015, 4(1), 3. 
  78. Z.-Y. Zhou, Q. Wang, J.-L. Lin, N. Tian, and S.-G. Sun, Electrochim. Acta, 2010, 55(27), 7995-7999.  https://doi.org/10.1016/j.electacta.2010.02.071
  79. X. Fang, L. Wang, P. K. Shen, G. Cui, and C. Bianchini, J. Power Sources, 2010, 195(5), 1375-1378.  https://doi.org/10.1016/j.jpowsour.2009.09.025
  80. A. O. Neto, J. Nandenha, M. H. M. T. Assumpcao, M. Linardi, E. V. Spinace, and R. F. B. de Souza, Int. J. Hydrogen Energy, 2013, 38(25), 10585-10591.  https://doi.org/10.1016/j.ijhydene.2013.06.026
  81. Z. Liu, J. E. Hu, Q. Wang, K. Gaskell, A. I. Frenkel, G. S. Jackson, and B. Eichhorn, J. Am. Chem. Soc., 2009, 131(20), 6924-6925.  https://doi.org/10.1021/ja901303d
  82. A. Hassan, A. Carreras, J. Trincavelli, and E. A. Ticianelli, J. Power Sources, 2014, 247, 712-720.  https://doi.org/10.1016/j.jpowsour.2013.08.138
  83. S. Mukerjee, R. C. Urian, S. J. Lee, E. A. Ticianelli, and J. McBreen, J. Electrochem. Soc., 2004, 151(7), A1094. 
  84. B. N. Grgur, N. M. Markovic, and P. N. Ross, J. Electrochem. Soc., 1999, 146(5), 1613-1619.  https://doi.org/10.1149/1.1391815
  85. N. Tsiouvaras, M. A. Pena, J. L. G. Fierro, E. Pastor, and M. V. Martinez-Huerta, Catal. Today, 2010, 158(1-2), 12-21.  https://doi.org/10.1016/j.cattod.2010.05.004
  86. S. Feng, J. Chen, G. Qian, Y. Mo, J. Lu, W. Chen, L. Luo, and S. Yin, ACS Appl. Energy Mater., 2020, 3(12), 12246-12253.  https://doi.org/10.1021/acsaem.0c02317
  87. D. K. Kang, C. S. Noh, N. H. Kim, S.-H. Cho, J. M. Sohn, T. J. Kim, and Y.-K. Park, J. Ind. Eng. Chem., 2010, 16(3), 385-389.  https://doi.org/10.1016/j.jiec.2009.09.067
  88. R. A. M. Esfahani and E. B. Easton, Appl. Catal. B Environ., 2020, 268, 118743. 
  89. R. C. Urian, A. F. Gulla, and S. Mukerjee, J. Electroanal. Chem., 2003, 554-555, 307-324.  https://doi.org/10.1016/S0022-0728(03)00241-9
  90. S. R. Pillai, S. H. Sonawane, S. P. Gumfekar, P. L. Suryawanshi, M. Ashokkumar, and I. Potoroko, Mater. Chem. Phys., 2019, 237, 121854. 
  91. A. Sarkar, A. V. Murugan, and A. Manthiram, J. Phys. Chem. C, 2008, 112(31), 12037-12043.  https://doi.org/10.1021/jp801824g
  92. V. Raghuveer, A. Manthiram, and A. J. Bard, J. Phys. Chem. B, 2005, 109, 22909-22912.  https://doi.org/10.1021/jp054815b
  93. P. Li, X. Yin, Y. Yan, K. Zhan, J. Yang, B. Zhao, and J. Li, J. Mater. Sci., 2018, 53, 6124-6134.  https://doi.org/10.1007/s10853-017-1972-y
  94. S. Chandrasekaran, E. J. Kim, J. S. Chung, C. R. Bowen, B. Rajagopalan, V. Adamaki, R. D. K. Misra, and S. H. Hur, J. Mater. Chem. A, 2016, 4, 13271-13279.  https://doi.org/10.1039/C6TA05043C
  95. C. Tang, A. Sun, Y. Xu, Z. Wu, and D. Wang, J. Power Sources, 2015, 296, 18-22.  https://doi.org/10.1016/j.jpowsour.2015.07.016
  96. Y. Hu and D. H. C. Chua, Sci. Rep., 2016, 6, 28088. 
  97. M. Bayati, X. Liu, P. Abellan, D. Pocock, M. Dixon, and K. Scott, ACS Appl. Energy Mater., 2020, 3(1), 843-851.  https://doi.org/10.1021/acsaem.9b01979
  98. T. Li, Z. Tang, K. Wang, W. Wu, S. Chen, and C. Wang, Int. J. Hydrogen Energy, 2018, 43, 4932-4941.  https://doi.org/10.1016/j.ijhydene.2018.01.107
  99. A. M. Gomez-Marin, J. L. Bott-Neto, J. B. Souza Jr., T. L. Silva, W. Beck Jr., L. C. Varanda, and E. A. Ticianelli, ChemElectroChem, 2016, 3(10), 1570-1579.  https://doi.org/10.1002/celc.201600376
  100. A. Vass, I. Borbath, I. Bakos, Z. Paszti, G. Safran, and A. Tompos, Reac. Kinet. Mech. Cat., 2019, 126, 679-699.  https://doi.org/10.1007/s11144-018-1512-z
  101. M. T. Anwar, X. Yan, M. R. Asghar, N. Husnain, S. Shen, L. Luo, X. Cheng, G. Wei, and J. Zhang, Chinese J. Catal., 2019, 40(8), 1160-1167.  https://doi.org/10.1016/S1872-2067(19)63365-6
  102. J. Qi, L. Jiang, Q. Jiang, S. Wang, and G. Sun, J. Phys. Chem. C, 2010, 114(42), 18159-18166.  https://doi.org/10.1021/jp102284s
  103. M. Feng, J. Huang, Y. Peng, C. Huang, X. Yue, and S. Huang, Chem. Eng. J., 2021, 428, 131206. 
  104. E. C. Weigert, D. V. Esposito, and J. G. Chen, J. Power Sources, 2009, 193(2), 501-506.  https://doi.org/10.1016/j.jpowsour.2009.04.020
  105. X. Liu, H. Wang, S. Chen, X. Qi, H. Gao, Y. Hui, Y. Bai, L. Guo, W. Ding, and Z. Wei, J. Energy Chem., 2014, 23(3), 358-362.  https://doi.org/10.1016/S2095-4956(14)60158-3
  106. L. G. S. Pereira, V. A. Paganin, and E. A. Ticianelli, Electrochim. Acta, 2009, 54(7), 1992-1998.  https://doi.org/10.1016/j.electacta.2008.07.003
  107. M.-K. Min, J. Cho, K. Cho, and H. Kim, Electrochim. Acta, 2000, 45(25-26), 4211-4217.  https://doi.org/10.1016/S0013-4686(00)00553-3
  108. T. C. M. Nepel, P. P. Lopes, V. A. Paganin, and E. A. Ticianelli, Electrochim. Acta, 2013, 88, 217-224.  https://doi.org/10.1016/j.electacta.2012.10.039
  109. A. Hassan, V. A. Paganin, A. Carreras, and E. A. Ticianelli, Electrochim. Acta, 2014, 142, 307-316.  https://doi.org/10.1016/j.electacta.2014.07.142
  110. N. P. Lebedeva and G. J. M. Janssen, Electrochim. Acta, 2005, 51(1), 29-40.  https://doi.org/10.1016/j.electacta.2005.04.034
  111. G. Papakonstantinou, F. Paloukis, A. Siokou, and S. G. Neophytides, J. Electrochem. Soc., 2007, 154, B989. 
  112. T.-C. Liu, W. G. Pell, B. E. Conway, and S. L. Roberson, J. Electrochem. Soc., 1998, 145(6), 1882-1888.  https://doi.org/10.1149/1.1838571
  113. S. L. Roberson, D. Finello, and R. F. Davis, J. Appl. Electrochem., 1999, 29, 75-80.  https://doi.org/10.1023/A:1003460529736
  114. J. Hu, Z. Liu, B. Eichhorn, and G. S. Jackson, ECS Trans., 2009, 19(31), 1-12.  https://doi.org/10.1149/1.3271356
  115. B. Mendoza-Sanchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. S. Grant, Electrochim. Acta, 2013, 91, 253-260. https://doi.org/10.1016/j.electacta.2012.11.127