DOI QR코드

DOI QR Code

계면활성제 및 이산화탄소 연속 주입을 활용한 탄소 저감 기술

Carbon Reduction Technology Applying the Surfactant and Carbon Dioxide Sequential Injection

  • Seokgu Gang (Department of Civil Engineering, Chungbuk National University) ;
  • Jongwon Jung (Department of Civil Engineering, Chungbuk National University)
  • 투고 : 2024.02.01
  • 심사 : 2024.02.27
  • 발행 : 2024.03.01

초록

이산화탄소 포집 및 지중 저장을 위해 유망한 지질학적 구조로는 대수층, 폐유전 및 가스전 등이 존재한다. 이 중 대수층은 다른 지질학적 구조에 비해 많은 양의 이산화탄소 저장이 가능한 것으로 판단됨에 따라 그 관심이 증가하고 있으며, 대수층의 특성을 반영하여 이산화탄소 저장 효율 향상을 위한 기술 개발이 필요한 실정이다. 따라서, 본 연구에서는 음이온성 계면활성제를 활용하여 공극수가 존재하는 마이크로모델 내 계면활성제 선 주입 후 초임계 이산화탄소 후속 주입에 따른 이산화탄소 저장 효율 평가를 수행하였다. 그 결과 선 주입되는 계면활성제 수용액의 농도가 증가함에 따라 이산화탄소 저장 효율이 개선되며, 농도가 낮을수록 이산화탄소 저장 효율 개선을 위한 더 많은 계면활성제의 주입이 필요한 것으로 나타난다. 또한 동일한 계면활성제 농도 조건에서 선행 연구의 계면활성제-초임계 이산화탄소 치환보다 계면활성제 선 주입 방식에서 이산화탄소 저장 효율은 약 30% 낮은 값을 나타내며, 본 연구의 최대 농도 조건에서 선행 연구와 유사한 이산화탄소 저장 효율을 나타낸다. 이러한 결과는 향후 대수층 내 이산화탄소 저장 효율 향상을 위한 계면활성제 적용 시 농도 결정에 활용될 것으로 기대된다.

Promising geological structures for carbon dioxide capture and subsurface storage include aquifers, depleted reservoirs, and gas fields. Among these, aquifers are gaining attention due to their potential for storing significant amounts of carbon dioxide compared to other geological structures. Therefore, there is a growing interest in enhancing carbon dioxide storage efficiency by understanding the characteristics of aquifers and developing technologies tailored to their properties. In this study, the storage efficiency of carbon dioxide injection following surfactant pre-injection into porous micro-models was evaluated. The results indicate that as the concentration of the surfactant solution injected prior to carbon dioxide injection increases, storage efficiency improves. Conversely, lower concentrations require more surfactant injection to enhance storage efficiency. Furthermore, under identical surfactant concentration conditions, the storage efficiency from surfactant pre-injection prior to supercritical carbon dioxide injection is approximately 30% lower compared to surfactant-co-solvent substitution as observed in previous studies. However, under the maximum concentration conditions investigated in this study, similar storage efficiencies to those of previous studies were achieved. These findings are expected to guide concentration determinations for surfactant application aimed at enhancing carbon dioxide storage efficiency in aquifers in future studies.

키워드

과제정보

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구(No. 2021201020010)이며, 이에 감사드립니다.

참고문헌

  1. Alnoush, W., Sayed, A. and Alyafei, N. (2019), Optimization of contact angle and interfacial tension measurements for fluid/rock systems at ambient conditions, MethodsX, 6, 1706~1715. https://doi.org/10.1016/j.mex.2019.07.009
  2. Ansarinasab, J. and Jamialahmadi, M. (2016), Investigating the effect of interfacial tension and contact angle on capillary pressure curve, using free energy Lattice Boltzmann Method, Journal of Natural Gas Science and Engineering, 35, 1146~1157. https://doi.org/10.1016/j.jngse.2016.09.055
  3. Cao, S., Dai, S. and Jung, J.W. (2015), Supercritical CO2 and Brine Displacement in Geological Carbon Sequestration, International Journal of Greenhouse Gas Control, Vol. 44, pp. 104~114.
  4. Gale, J. (2004), Geological storage of CO2: What do we know, where are the gaps and what more needs to be done, Energy, 29(9-10), 1329~1338. https://doi.org/10.1016/j.energy.2004.03.068
  5. Gang, S., Ryou, J. E., Lee, J. Y. and Jung, J. (2024), Enhancement of carbon dioxide storage efficiency using anionic surfactants, Fuel, 358, 129998.
  6. Jafari, M. and Jung, J. (2018), Variation of contact angles in brine/CO2/mica system considering short-term geological CO2 sequestration condition, Geofluids, 2018.
  7. Jang, J., Sun, Z. and Santamarina, J. C. (2016), Capillary pressure across a pore throat in the presence of surfactants, Water Resources Research, 52(12), 9586~9599. https://doi.org/10.1002/2015WR018499
  8. Jung, J. and Jong, W. H. (2016), Impact of pressure and brine salinity on capillary pressure-water saturation relations in geological CO2 sequestration, Advances in Condensed Matter Physics, DOI: 10.1155/2016/5603739.
  9. Jung, J. and Hu, J. W. (2016), Impact of pressure and brine salinity on capillary pressure-water saturation relations in geological CO 2 sequestration. Advances in Condensed Matter Physics, 2016.
  10. Kathel, P. and Mohanty, K. K. (2013), EOR in tight oil reservoirs through wettability alteration, In SPE annual technical conference and exhibition. OnePetro.
  11. Levitt, D. B., Dufour, S., Pope, G., Morel, D. and Gauer, P. (2012), Design of an ASP flood in a high-temperature, high-salinity, low-permeability carbonate, In IPTC 2012: International petroleum technology conference (pp. cp-280). European Association of Geoscientists & Engineers.
  12. Metz, B., Davidson, O., De Coninck, H. C., Loos, M. and Meyer, L. (2005), IPCC special report on carbon dioxide capture and storage, Cambridge: Cambridge University Press.
  13. National Center for Biotechnology Information (2023), PubChem Compound Summary for CID 3423265, Sodium dodecyl sulfate, Retrieved September 13, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-dodecyl-sulfate
  14. Park, Y. C., Kim, S., Lee, J. H. and Shinn, Y. J. (2019), Effect of reducing irreducible water saturation in a near-well region on CO2 injectivity and storage capacity, International Journal of Greenhouse Gas Control, 86, 134~145. https://doi.org/10.1016/j.ijggc.2019.04.014
  15. Peter, A., Yang, D., Eshiet, K. I. I. I. and Sheng, Y. (2022), A review of the studies on CO2-brine-rock interaction in geological storage process, Geosciences, 12(4), 168.
  16. Postmus, B. R. (2008), Polymer vs. surfactant: competitive adsorption at the solid-liquid interface, Wageningen University and Research.
  17. Ryou, J. E. and Jung, J. (2021), The Fundamental Study on Penetration Behavior of Biopolymer Solution for Ground Reinforcement.
  18. Ryou, J. E. and Jung, J. (2022), Characteristics of biopolymer guar gum solution injection for eco-friendly ground reinforcement, Journal of Korean Hazard and Mitigation, 22(1), 201~207. https://doi.org/10.9798/KOSHAM.2022.22.1.201
  19. Seok, G. B., Park, Y. C., Lee, J. Y., Lee, Y. K., Kim, K. Y., Son, H. and Raab, M. (2023), Impact of surfactants on CO2-brine relative permeability under reservoir conditions, Energy Reports, 9, 3755~3770. https://doi.org/10.1016/j.egyr.2023.02.052
  20. Tokunaga, T., Wan, J., Jung, J.W., Kim, T. K., Kim, Y. and Dong, W. (2013), Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions, Water Resources Research (AGU), Vol. 49, pp. 1~14. https://doi.org/10.1029/2012WR012444
  21. Watson, M. N., Zwingmann, N. and Lemon, N. M. (2003, January), The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir. In Greenhouse Gas Control Technologies-6th International Conference (pp. 435~440). Pergamon.