DOI QR코드

DOI QR Code

Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression

  • Heui-Jin Park (College of Pharmacy, Ewha Womans University) ;
  • Kyuri Kim (College of Pharmacy, Ewha Womans University) ;
  • Eun-Young Lee (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Prima F. Hillman (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Sang-Jip Nam (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Kyung-Min Lim (College of Pharmacy, Ewha Womans University)
  • Received : 2023.05.30
  • Accepted : 2023.08.28
  • Published : 2024.03.01

Abstract

Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in MelanodermTM. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

Keywords

Acknowledgement

This work was supported by grants from National Research Foundation of Korea (Grant No. 2021R1A2C2013347, 2021R1A6C101A442 and MSIT 2018R1A5A2025286).

References

  1. Ando, H., Niki, Y., Ito, M., Akiyama, K., Matsui, M. S., Yarosh, D. B. and Ichihashi, M. (2012) Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132, 1222-1229. https://doi.org/10.1038/jid.2011.413
  2. Bernklau, E., Hibbard, B. and Bjostad, L. (2019) Repellent effects of methyl anthranilate on western corn rootworm larvae (Coleoptera: Chrysomelidae) in soil bioassays. J. Econ. Entomol. 112, 683-690. https://doi.org/10.1093/jee/toy346
  3. Brenner, M. and Hearing, V. J. (2008) The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
  4. Cheli, Y., Luciani, F., Khaled, M., Beuret, L., Bille, K., Gounon, P., Ortonne, J.-P., Bertolotto, C. and Ballotti, R. (2009) αMSH and cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J. Biol. Chem. 284, 18699-18706. https://doi.org/10.1074/jbc.M109.005819
  5. Costin, G.-E. and Hearing, V. J. (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
  6. Cui, R., Widlund, H. R., Feige, E., Lin, J. Y., Wilensky, D. L., Igras, V. E., D'Orazio, J., Fung, C. Y., Schanbacher, C. F. and Granter, S. R. (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853-864. https://doi.org/10.1016/j.cell.2006.12.045
  7. D'Mello, S. A., Finlay, G. J., Baguley, B. C. and Askarian-Amiri, M. E. (2016) Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144.
  8. Garcia-Borron, J. C., Abdel-Malek, Z. and Jimenez-Cervantes, C. (2014) MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res. 27, 699-720. https://doi.org/10.1111/pcmr.12257
  9. Goenka, S. and Simon, S. R. (2020) Organogold drug Auranofin exhibits anti-melanogenic activity in B16F10 and MNT-1 melanoma cells. Arch. Dermatol. Res. 312, 213-221. https://doi.org/10.1007/s00403-019-01974-1
  10. Hearing, V., Nordlund, J., Boissy, R., Hearing, V., King, R. and Ortonne, J. (1998) The Pigmentary System: Physiology and Pathophysiology, pp. 423-438. Oxford University Press, New York.
  11. Hurbain, I., Romao, M., Sextius, P., Bourreau, E., Marchal, C., Bernerd, F., Duval, C. and Raposo, G. (2018) Melanosome distribution in keratinocytes in different skin types: melanosome clusters are not degradative organelles. J. Invest. Dermatol. 138, 647-656. https://doi.org/10.1016/j.jid.2017.09.039
  12. Irawan, C., Islamiyati, D., Putri, R. P. and Madiabu, M. J. (2018) Synthesis and mass spectrum characterization of lyrame schiff base for synthetic ingredients in perfumes industry. Orient. J. Chem. 34, 3118.
  13. Kim, K., Huh, Y. and Lim, K.-M. (2021a) Anti-pigmentary natural compounds and their mode of action. Int. J. Mol. Sci. 22, 6206.
  14. Kim, K., Jeong, H.-I., Yang, I., Nam, S.-J. and Lim, K.-M. (2021b) Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities. J. Ginseng Res. 45, 98-107. https://doi.org/10.1016/j.jgr.2019.11.007
  15. Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S.-J., and Lim, K.-M. (2017) Anti-pigmentary effect of (-)-4-hydroxysattabacin from the marine-derived bacterium Bacillus sp. Mar. Drugs 15, 138.
  16. Kim, M. and Lim, K. M. (2023) Melanocytotoxic chemicals and their toxic mechanisms. Toxicol. Res. 38, 417-435. https://doi.org/10.1007/s43188-022-00144-2
  17. Kim, S. S., Kim, M.-J., Choi, Y. H., Kim, B. K., Kim, K. S., Park, K. J., Park, S. M., Lee, N. H. and Hyun, C.-G. (2013) Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac. J. Trop. Biomed. 3, 617-622. https://doi.org/10.1016/S2221-1691(13)60125-2
  18. Lee, C.-S., Nam, G., Bae, I.-H. and Park, J. (2019) Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J. Ginseng Res. 43, 300-304. https://doi.org/10.1016/j.jgr.2017.12.005
  19. Lee, J., Jun, H., Jung, E., Ha, J. and Park, D. (2010) Whitening effect of α-bisabolol in Asian women subjects. Int. J. Cosmet. Sci. 32, 299-303. https://doi.org/10.1111/j.1468-2494.2010.00560.x
  20. Luo, Z. W., Cho, J. S. and Lee, S. Y. (2019) Microbial production of methyl anthranilate, a grape flavor compound. Proc. Natl. Acad. Sci. U. S. A. 116, 10749-10756. https://doi.org/10.1073/pnas.1903875116
  21. Moio, L. and Etievant, P. (1995) Ethyl anthranilate, ethyl cinnamate, 2, 3-dihydrocinnamate, and methyl anthranilate: four important odorants identified in Pinot noir wines of Burgundy. Am. J. Enol. Vitic. 46, 392-398. https://doi.org/10.5344/ajev.1995.46.3.392
  22. Pillet, J., Chambers, A. H., Barbey, C., Bao, Z., Plotto, A., Bai, J., Schwieterman, M., Johnson, T., Harrison, B., and Whitaker, V. M. (2017) Identification of a methyltransferase catalyzing the final step of methyl anthranilate synthesis in cultivated strawberry. BMC Plant. Biol. 17, 147.
  23. Seiberg, M. (2001) Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res. 14, 236-242. https://doi.org/10.1034/j.1600-0749.2001.140402.x
  24. Wang, J. and Luca, V. D. (2005) The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including 'foxy' methyl-anthranilate. Plant J. 44, 606-619. https://doi.org/10.1111/j.1365-313X.2005.02552.x
  25. Yamaguchi, Y. and Hearing, V. J. (2014) Melanocytes and their diseases. Cold Spring Harb. Perspect. Med. 4, a017046.