A comparison of five sets of overlapping and non-overlapping sliding windows for semen production traits in the Thai multibreed dairy population

  • Received : 2023.06.21
  • Accepted : 2023.10.02
  • Published : 2024.03.01


Objective: This study compared five distinct sets of biological pathways and associated genes related to semen volume (VOL), number of sperm (NS), and sperm motility (MOT) in the Thai multibreed dairy population. Methods: The phenotypic data included 13,533 VOL records, 12,773 NS records, and 12,660 MOT records from 131 bulls. The genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNPs) from 72 animals. The SNP additive genetic variances for VOL, NS, and MOT were estimated for SNP windows of one SNP (SW1), ten SNP (SW10), 30 SNP (SW30), 50 SNP (SW50), and 100 SNP (SW100) using a single-step genomic best linear unbiased prediction approach. The fixed effects in the model were contemporary group, ejaculate order, bull age, ambient temperature, and heterosis. The random effects accounted for animal additive genetic effects, permanent environment effects, and residual. The SNPs explaining at least 0.001% of the additive genetic variance in SW1, 0.01% in SW10, 0.03% in SW30, 0.05% in SW50, and 0.1% in SW100 were selected for gene identification through the NCBI database. The pathway analysis utilized genes associated with the identified SNP windows. Results: Comparison of overlapping and non-overlapping SNP windows revealed notable differences among the identified pathways and genes associated with the studied traits. Overlapping windows consistently yielded a larger number of shared biological pathways and genes than non-overlapping windows. In particular, overlapping SW30 and SW50 identified the largest number of shared pathways and genes in the Thai multibreed dairy population. Conclusion: This study yielded valuable insights into the genetic architecture of VOL, NS, and MOT. It also highlighted the importance of assessing overlapping and non-overlapping SNP windows of various sizes for their effectiveness to identify shared pathways and genes influencing multiple traits.



The authors would like to express their sincere gratitude for the valuable data provided by the Dairy Farming Promotion Organization (DPO) and the unwavering support extended by the Tropical Animal Genetic Special Research Unit (TAGU) at Kasetsart University and the University of Florida, Gainesville, Florida, USA. Their contribution has been instrumental in the successful completion of this research, and their collaborative efforts are highly appreciated.


  1. Koonawootrittriron S, Elzo MA, Thongprapi T. Genetic trends in a Holstein x other breeds multibreed dairy population in Central Thailand. Livest Sci 2009;122:186-92. 
  2. Sarakul M, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D. Genetic parameters, predictions, and rankings for semen production traits in a Thailand multi-breed dairy population using genomic-polygenic and polygenic models. Anim Reprod Sci 2018;195:71-9. 
  3. Penagaricano F, Weigel KA, Rosa GJM, Khatib H. inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Front Genet 2013;3:307. 
  4. Galliou JM, Kiser JN, Oliver KF, et al. Identification of loci and pathways associated with heifer conception rate in U.S. Holsteins. Genes (Basel) 2020;11:767. 
  5. Braz CU, Taylor JF, Bresolin T, et al. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet 2019;20:8. 
  6. Wu Y, Fan H, Wang Y, et al. Genome-Wide Association Studies Using Haplotypes and Individual SNPs in Simmental Cattle. PLoS One 2014;9:e109330. 
  7. Barendse W. Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle. PLoS One 2011;6:e29601. 
  8. Srivastava S, Srikantha K, Won S, et al. Haplotype-based genome-wide association study and identification of candidate genes associated with carcass traits in Hanwoo cattle. Genes (Basel) 2020;11:551. 
  9. Chen Z, Yao Y, Ma P, Wang Q, Pan Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS One 2018;13:e0192695. 
  10. Feitosa FLB, Pereira ASC, Mueller LF, et al. Genome-wide association study for beef fatty acid profile using haplotypes in Nellore cattle. Livest Sci 2021;245:104396. 
  11. Yang HC, Liang YJ, Wu YL, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS One 2009;4:e5459. 
  12. Yang HC, Lin CY, Fann CSJ. A sliding-window weighted linkage disequilibrium test. Genet Epidemiol 2006;30:531-45. 
  13. Sarakul M, Elzo MA, Koonawootrittriron S, et al. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim Reprod Sci 2018;197:324-34. 
  14. Jattawa D, Elzo MA, Koonawootrittriron S, Suwanasopee T. Imputation accuracy from low to moderate density single nucleotide polymorphism chips in a Thai multibreed dairy cattle population. Asian-Australas J Anim Sci 2016;29:464-70. 
  15. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014;15:478. 
  16. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res 2012;94:73-83. 
  17. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. 
  18. Mistal I, Tsuruta S, Strabal T, et al. BLUPF90 and related programs (GSF90). In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 2002. August 19-23, 2002. Montpellier, France. Available from: 
  19. Tsuruta S. Average Information REML with several options including EM-REML and heterogeneous residual variances [internet]. c2016 [cited 2019 Feb 1]. Available form: 
  20. Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci 2009;92:4656-63. 
  21. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008; 91:4414-23. 
  22. Hanna LLH, Riley DG. Mapping genomic markers to closets feature using the R package Map2NCBI. Livest Sci 2014;162:59-65. 
  23. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091-3.
  24. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979;6:65-70. 
  25. Meuwissen THE, Odegard J, Andersen-Ranberg I, Grindflek E. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding. Genet Sel Evol 2014;46:49. 
  26. Calus MPL, Meuwissen THE, de Roos APW, Veerkamp RF. Accuracy of genomic selection using different methods to define haplotypes. Genetics 2008;178:553-61. 
  27. Zhao H, Pfeiffer R, Gail MH. Haplotype analysis in population genetics and association studies. Pharmacogenomics 2003;4:171-8. 
  28. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol 2002;23:221-33. 
  29. Janidarmian M, Radecka K, Zilic Z. Automated diagnosis of knee pathology using sensory data. In: Proceedings of 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH); 2014, November 3-5; Athens, Greece.