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Objective: This study compared five distinct sets of biological pathways and associated 
genes related to semen volume (VOL), number of sperm (NS), and sperm motility (MOT) 
in the Thai multibreed dairy population.
Methods: The phenotypic data included 13,533 VOL records, 12,773 NS records, and 12,660 
MOT records from 131 bulls. The genotypic data consisted of 76,519 imputed and actual 
single nucleotide polymorphisms (SNPs) from 72 animals. The SNP additive genetic variances 
for VOL, NS, and MOT were estimated for SNP windows of one SNP (SW1), ten SNP 
(SW10), 30 SNP (SW30), 50 SNP (SW50), and 100 SNP (SW100) using a single-step 
genomic best linear unbiased prediction approach. The fixed effects in the model were 
contemporary group, ejaculate order, bull age, ambient temperature, and heterosis. The 
random effects accounted for animal additive genetic effects, permanent environment 
effects, and residual. The SNPs explaining at least 0.001% of the additive genetic variance 
in SW1, 0.01% in SW10, 0.03% in SW30, 0.05% in SW50, and 0.1% in SW100 were selected 
for gene identification through the NCBI database. The pathway analysis utilized genes 
associated with the identified SNP windows.
Results: Comparison of overlapping and non-overlapping SNP windows revealed notable 
differences among the identified pathways and genes associated with the studied traits. 
Overlapping windows consistently yielded a larger number of shared biological pathways 
and genes than non-overlapping windows. In particular, overlapping SW30 and SW50 
identified the largest number of shared pathways and genes in the Thai multibreed dairy 
population. 
Conclusion: This study yielded valuable insights into the genetic architecture of VOL, NS, 
and MOT. It also highlighted the importance of assessing overlapping and non-overlapping 
SNP windows of various sizes for their effectiveness to identify shared pathways and genes 
influencing multiple traits. 
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INTRODUCTION

The Thai multibreed dairy population consists primarily of Holstein crossbred animals, 
along with small numbers of animals with various proportions of Brahman, Brown Swiss, 
Jersey, Red Dane, Red Sindhi, Sahiwal, and Thai Native [1]. A recent genome-wide asso-
ciation study (GWAS) on semen traits in this population identified specific single nucleotide 
polymorphisms (SNPs) associated with semen volume (VOL), number of sperm (NS), 
and sperm motility (MOT) across all 29 autosomes and the X chromosome [2]. This study 
revealed that these traits are influenced by genes involved in focal adhesion, actin cytoskele-
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ton regulation, oxytocin signaling, axon guidance, B cell 
receptor signaling, rap1 signaling, and sphingolipid signal-
ing pathways, which are closely linked to sperm morphology 
and physiology during spermatogenesis in Thai dairy bulls 
[2]. Similar research conducted on Holstein cattle in the 
United States identified gene sets associated with conception 
rate, involving small GTPases mediated signal transduction, 
neurogenesis, calcium ion binding, cytoskeleton, PI3K sig-
naling in B lymphocytes, axonal guidance signaling, and role 
of macrophages pathways [3,4]. 
 However, the utilization of individual SNPs in these studies 
may not represent the most efficient approach, because they 
offer limited genomic information specific to certain genomic 
regions [5,6]. Research in cattle by authors [7-10] reported 
using of haplotype for GWAS adds information more than 
obtained only by single SNPs. Therefore, an alternative strategy 
involves conducting haplotype association analyses based on 
overlapping windows, where contiguous neighboring SNPs 
are combined within a window for GWAS data analysis [11]. 
 Previous studies employed sliding-window haplotypes of 
various sizes (3, 5, 7, 9, and 11 SNPs) in Nelore cattle [5] and 
multiple moving window sizes (3, 5, 7, and 9) in Han Chinese 
population [11]. The selection of an appropriate window size 
is critical because a larger window may encompass non-in-
formative markers, whereas a smaller window may overlook 
informative markers [12]. However, the optimal window 
size and a standardized criterion for defining the optimal 
SNPs within each window size remain uncertain. Moreover, 
no studies have specifically investigated the optimal window 
size for identifying sets of SNPs associated with genes in bio-
logical pathways that influence semen traits in the Thai 
multibreed dairy population, nor have they explored a suit-
able strategy for selecting these window sizes. Therefore, the 
objective of this research was to compare five different sets 
of biological pathways and genes influencing VOL, NS, and 
MOT across overlapping and non-overlapping windows of 
various sizes (1, 10, 30, 50, and 100 SNP) in terms of their 
quantity, percentage, nomenclature, and functions in the 
Thai multibreed dairy population.

MATERIALS AND METHODS

Ethics approval
The dataset utilized in this study was obtained from cattle 
raised in commercial dairy farms that strictly adhere to the 
Good Agricultural Practices outlined by the National Bureau 
of Agricultural Commodity and Food Standards, as well as 
the Good Farming Management Practices mandated by the 
Department of Livestock Development, Ministry of Agriculture 
and Cooperatives, Thailand. Ethical clearance for conduct-
ing the study was granted by the Institutional Animal Care 
and Use Committee of Kasetsart University, with approval 

number ACKU60-AGR-009. The study was conducted in 
accordance with the ethical guidelines and regulations, en-
suring the welfare and ethical treatment of the animals 
involved.

Animals, management, and feeding
The dataset comprised 131 bulls with phenotypic records for 
VOL (n = 13,533), NS (n = 12,773), and MOT (n = 12,660) 
obtained from the Semen Production and Dairy Genetic 
Evaluation Center of the Dairy Farming Promotion Organi-
zation of Thailand (DPO). These bulls were the offspring of 
62 sires and 112 dams. The sires of the bulls were associated 
with the Semen Production and Dairy Genetic Evaluation 
Center of the DPO, while the dams were from 87 dairy farms 
situated across the Central, Northeastern, Northern, and 
Southern regions of Thailand. The bull population consisted 
of purebred Holstein (H) individuals as well as H crossbred 
animals with various fractions of Brahman, Brown Swiss, 
Jersey, Red Dane, Red Sindhi, Sahiwal, and Thai Native [1]. 
Crossbred bulls accounted for 95% of the population, with 
most of them having a predominant H fraction and smaller 
fractions of other breeds. Further, all bulls in the population 
had H fractions ranging from 62.5% to 100%, with an aver-
age of 92%. The pedigree file encompassed a total of 304 
animals, including bulls, sires, and dams.
 The bulls were housed in open-barn stalls throughout the 
study period, except during semen collection, and were pro-
vided unrestricted access to mineral supplements, water, and 
fresh roughage. Concentrate feed (Charoen Pokphand Foods, 
Bangkok, Thailand) containing 16% crude protein, 2% fat, 
14% fiber, and 13% moisture was administered to the bulls 
once daily. Fresh roughage comprised Guinea grass (Panicum 
maximum), Ruzi grass (Brachiaria ruziziensis), Napier grass 
(Pennisetum purpureum), and Para grass (Brachiaria mutica) 
harvested and transported to the bull stalls. Additionally, 
Guinea and Ruzi grass hay and silage were provided to the 
bulls during the dry season (November to June) when fresh 
grass was scarce.

Traits
The traits were VOL (milliliters), NS (millions), and MOT 
(percentage). These traits were collected over a period span-
ning from October 2001 to July 2017 and were consistently 
evaluated by a single proficient technician throughout the 
duration of the research. Semen volume was quantified by 
measuring the amount of semen per ejaculate using a gradu-
ated tube. The NS per ejaculate was calculated by multiplying 
the semen volume (milliliters) by the sperm concentration 
(millions of sperm per milliliter). The determination of sperm 
concentration involved the utilization of a hematocytometer. 
The sperm concentration was derived by multiplying the aver-
age NS per counting area by a factor of 10,000 (NS per 0.1 
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milliliter) and subsequently by 100 (dilution ratio) to obtain 
the NS per milliliter. Sperm MOT was assessed by examining 
five microcells under an optical microscope with a magnifi-
cation of 400×. Sperm MOT was defined as the mean value 
of two repeated measurements, representing the percentage 
of spermatozoa exhibiting forward movement. Bull identifi-
cation, collection date and time, ejaculation number, ambient 
temperature (in degrees Celsius), and the name of the col-
lector were recorded during each semen collection. For a 
comprehensive description of these traits, please refer to 
Sarakul et al [13].

Genotypic data 
The genotypic data came from semen samples collected 
from 61 out of the 131 bulls with available phenotypic re-
cords. Additionally, blood samples were obtained from 11 
dams of sires [14]. Genomic DNA was extracted from frozen 
semen samples using the GenElute Mammalian Genomic 
DNA Miniprep kit (Sigma, Ronkonkoma, NY, USA) and 
from blood samples using the MasterPure DNA Purification 
kit (Epicentre Biotechnologies, Madison, WI, USA). The 
quality of the DNA samples was assessed using a NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific Inc., 
Wilmington, DE, USA). DNA samples with a concentration of 
15 ng/μL and an absorbance ratio of 1.8 at 260/280 nm were 
sent to GeneSeek for genotyping using GeneSeek Genomic 
Profiler (GGP) chips (GeneSeek Inc., Lincoln, NE, USA). 
Specifically, the 61 bulls were genotyped using GGP80K 
(76,694 SNP), whereas the 11 dams were genotyped using 
GGP9K (8,590 SNP). Dams genotyped with GGP9K were 

imputed to GGP80K [8] using version 2.2 of the FImpute 
program [15]. This imputation step utilized 2,661 animals 
genotyped with GGP9K (1,412 cows), GGP20K (570 cows), 
and GGP26K (540 cows), and GGP80K (89 sires and 50 cows) 
in a previous research project [14]. SNP genotypes from au-
tosomes and the X chromosome with either a call rate lower 
than 0.90 or a minor allele frequency below 0.05 were ex-
cluded from the analysis. Thus, the edited genotype file had 
76,519 actual and imputed SNP markers per animal. Due to 
limitations of the imputation program utilized for transi-
tioning from low-density chips (GGP9K, GGP20K, and 
GGP26K) to a high-density chip (GGP80K), SNP markers 
from the Y chromosome were excluded during the con-
struction of the input file. Figure 1 provides an overview of 
the total number of SNP markers per chromosome.

Construction of the five single nucleotide 
polymorphism windows 
Five SNP window sizes encompassing both overlapping and 
non-overlapping windows were used in this study. These five 
SNP windows contained one (SW1), ten (SW10), thirty 
(SW30), fifty (SW50), and one hundred (SW100) SNPs. The 
sizes of the overlapping windows were determined based on 
the contiguous number of SNPs within each window size. 
Thus, for SW10, the first window was constructed with 
SNP 1 to 10 (SNP1-SNP2-SNP3-SNP4-SNP5-SNP6-SNP7-
SNP8-SNP9-SNP10), the second window encompassed SNP 
2 to 11 (SNP2-SNP3-SNP4-SNP5-SNP6-SNP7-SNP8-SNP9-
SNP10-SNP11), and so on. In contrast, the sizes of non-
overlapping windows were determined by summing the 

Figure 1. Total number of single nucleotide polymorphism per chromosome in the Thai multibreed dairy population. 
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number of SNPs within each window size. Thus, for SW10, 
the first window contained SNP 1 to 10 (SNP1-SNP2-SNP3-
SNP4-SNP5-SNP6-SNP7-SNP8-SNP9-SNP10), the second 
window included SNP 11 to 20 (SNP11-SNP12-SNP13-SNP14-
SNP15-SNP16-SNP17-SNP18-SNP19-SNP20), and so on. Figure 
2 depicts the overlapping and non-overlapping windowing 
techniques utilized in this research.

Genome-wide association analysis
The selection of five distinct window sizes (1, 10, 30, 50, and 
100 SNPs) for both overlapping and non-overlapping windows, 
defined in terms of the values of SNP variances for all three 
semen traits, was based on the SNP variance values obtained 
through a GWAS (Wang et al [16]). The estimation of SNP 
variances was performed using a single-step genomic best 
linear unbiased prediction (GBLUP) procedure [17] imple-
mented in program POSTGSF90 from the BLUPF90 family 
of programs [18].
 A 3-trait genomic-polygenic repeatability model was em-
ployed to estimate the variance and covariance components 
among semen traits using restricted maximum likelihood. 
The estimation was performed with an average information 
algorithm implemented in the AIREMLF90 program [19]. 
Fixed effects in the model comprised contemporary group 
(year and month of semen collection), ejaculate order (first 
or second), age of the bull (months), ambient temperature 
(°C), and heterosis calculated as a function of heterozygosity. 
Heterozygosity was determined based on expected Holstein 
fraction in the sire × expected O fraction in the dam + expected 
O fraction in the sire × expected Holstein fraction in the 
dam, where O = other breeds (Brahman, Brown Swiss, Red 
Danish, Jersey, Red Sindhi, Sahiwal, and Thai Native [1]). 
Random effects were animal additive genetic, permanent 
environment, and residual. The mean of the animal additive 
genetic effects, permanent environment effects, and residual 
was assumed to be zero. The model in matrix notation can 

be represented as follows:

 y = Xb+Zaaa+Zppp+e,

where y represents the vector of phenotypic records (VOL, 
NS, and MOT), b was a vector of fixed effects, aa was a vec-
tor of random animal additive genetic effects, pp was a vector 
of random permanent environmental effects, and e was a 
vector of random residuals. The incidence matrices X, Za, 
and Zp related records to fixed effects in vector b, to random 
animal additive genetic effects in vector aa, and to random 
permanent environmental effects in vector pp, respectively. 
The mean of the animal additive genetic effects, permanent 
environment effects, and residual was assumed to be zero. 
 The variance-covariance matrix among animal additive 
genetic effects in the 3-trait genomic-polygenic repeatability 
model was defined as follows: 
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where A11 represents the matrix of additive genetic relation-
ships among non-genotyped animals, A12 denotes the matrix 
of additive relationships between non-genotyped and geno-
typed animals, A22

-1 is the inverse of the matrix of additive 
relationships among genotyped animals, and G22 designates 
the matrix of genomic relationships among genotyped animals 
[20]. The matrix G22 was constructed as follows:

G22 = ZZ'/2∑pj(1–pj), 

where pj is the frequency of allele 2 in locus j, and zij was de-
fined as follows: (0–2pj) for the homozygous genotype 11 in 
locus j, (1–2pj) for the heterozygous genotypes 12 or 21 in 
locus j, and (2–2pj) for the homozygous genotype 22 in locus 
j [21,17]. The matrix G22 was constructed using default weight 
factors (tau = 1, alpha = 0.95, beta = 0.05, gamma = 0, delta 
= 0, and omega = 1) and scaled using default restrictions 
(mean of diagonal elements of G22 = mean of diagonal ele-
ments of A22 and mean of off-diagonal elements of G22 = 
mean of off-diagonal elements of A22) as defined by the 
PREGSF90 program of the BLUPF90 Family of Programs 
[18]. The proportion of the additive genetic variance ex-
plained by overlapping and non-overlapping SNP windows 
for SW1, SW10, SW30, SW50, and SW100 was determined 
using program POSTGSF90. The percentage of additive ge-
netic variance explained by each SNP window was computed 
using the following formula:
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where Var(ai) represents the additive genetic variance asso-
ciated with the ith SNP window. For overlapping windows, 
Var(ai) was equal to the sum of the variances of all the con-
tiguous SNP markers in the ith SNP window. For non-
overlapping windows, Var(ai) was equal to the sum of the 
variances of all the SNP markers the ith SNP window. The 
term σa

2 represents the total additive genetic variance in the 
population. By applying this formula, we quantified the pro-
portion of the additive genetic variance explained by each 
SNP window as a percentage of the total additive genetic 
variance. This measure provides information on the relative 
contribution of each SNP window to the total additive ge-
netic variance of each semen trait in this study.

Identification of SNP markers, genes, and pathway 
analysis
SNP markers that explained a minimum of 0.001% of the 
additive genetic variance for the three semen traits were se-
lected to identify genes associated with VOL, NS, and MOT 
in both overlapping and non-overlapping windows. Thus, 
the minimum percentage of the additive genetic variance 

explained per overlapping and non-overlapping window 
was 0.001% for SW1, 0.01% for SW10, 0.03% for SW30, 
0.05% for SW50, and 0.1% for SW100. The base pair (bp) 
positions of these SNP markers were used to locate genes or 
nearby genes in the UMD Bos taurus 3.1 assembly of the 
bovine genome database from the National Center for Bio-
technology Information (NCBI) with R package Map2NCBI 
[22]. The pathway analysis included SNP markers that were 
located inside genes, within 2,500 bp, between 2,500 bp and 
5,000 bp, between 5,000 bp and 25,000 bp, and more than 
25,000 bp away from genes in the NCBI database. 
 Genes identified by the five overlapping and non-over-
lapping window sizes were used to identify biological 
pathways related to VOL, NS, and MOT. The Kyoto ency-
clopedia of genes and genomes database (KEGG) and the 
ClueGo plugin of Cytoscape [23] were employed for this 
analysis. The statistical test used for pathway analysis was a 
two-sided hypergeometric test, and multiple testing was 
corrected using the Bonferroni step-down procedure [24]. 
Biological pathways were considered significantly enriched 
or depleted for those traits if their p-values were lower than 
0.05.

RESULTS AND DISCUSSION

Number of SNP and genes in overlapping and non-
overlapping SNP windows of five sizes 
Numbers of SNP markers accounting for at least 0.001% of 
the additive genetic variance for VOL, NS, and MOT in 
overlapping and non-overlapping windows for SW1, SW10, 
SW30, SW50, and SW100, identified by their distance from 
genes in the NCBI database, are presented in Table 1. The 
number of SNP explaining at least 0.001%, 0.01%, 0.03%, 
0.05%, and 0.01% of the genetic variance in overlapping and 
non-overlapping windows represented 57% and 57% for 
SW1, 68% and 58% for SW10, 75 and 67% for SW30, 73% 
and 67% for SW50, and 71% and 65% for SW100, respec-
tively. Large percentages of SNP markers associated with 
VOL, NS, and MOT were located inside genes (38.4%) and 
more than 25,000 bp away from genes (39.2%). Conversely, 
smaller percentages of SNP markers for the three semen 
traits were found within 2,500 bp (5.1%), between 2,500 and 
5,000 bp (3.2%), and between 5,000 and 25,000 bp of genes 
(14.1%). 
 Overlapping and non-overlapping SNP windows con-
tained a similar total number of SNP markers across all 
distances from genes in the NCBI database for SW1 (43,494 
SNP vs 43,616 SNP). However, overlapping SNP windows 
included greater total numbers of SNP markers across all 
distances from genes than non-overlapping windows for 
SW10 (52,268 SNP vs 44,611 SNP), SW30 (56,620 SNP vs 
50,996 SNP), SW50 (56,237 SNP vs 51,435 SNP), and SW100 
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(54,526 SNP vs 50,020 SNP). Total number of SNP markers 
across all distances from genes for overlapping windows 
were similar for SW30, SW50, and SW100. A similar situa-
tion existed for non-overlapping windows. These numbers 
of SNP markers close to genes indicate that SW1, SW10, and 
SW30 may be sufficient to determine pathway similarities 
among SNP sets. 
 Table 2 presents the numbers of genes associated with 
VOL, NS, and MOT identified by distance between SNP and 
gene in the NCBI database explaining at least 0.001% of the 
additive genetic variance in overlapping and non-overlapping 
SNP windows of five different sizes. On the average, 72% of 
genes associated with VOL, NS, and MOT in overlapping 
and non-overlapping SNP windows of five sizes were identi-
fied by SNP markers located inside genes or within 2,500 bp 
of genes. Seventeen percent of the genes were identified by 
SNP markers located between 2,500 and 5,000 bp from genes, 
7% by SNP markers located between 5,000 and 25,000 bp 
from genes, and 4% by SNP markers located over 25,000 bp 

from genes. Thus, using only SNPs located inside genes or 
within 2,500 bp of genes in the NCBI database is enough to 
identify genes involved biological pathways affecting semen 
production traits in Thai cattle. 
 Numbers of genes associated with VOL, NS, and MOT 
identified by SNP from overlapping and non-overlapping 
SW1 were similar for all SNP-gene distances. Conversely, 
numbers of genes associated with these three semen traits 
identified by SNP from overlapping were higher than those 
from non-overlapping for SW10, SW30, SW50, and SW100 
for all SNP-gene distances. The similarities observed among 
numbers of genes identified through overlapping and non-
overlapping SW30, SW50, and SW100 indicate that SW30 
may be sufficient to determine pathway associations affect-
ing. It is important to note that no previous studies comparing 
overlapping and non-overlapping SNP windows, specifically 
considering SW1, SW10, SW30, SW50, and SW100 were 
found in the literature. These findings indicate that overlap-
ping windows yielded a greater amount of genetic information 

Table 1. Number of SNP for semen traits explaining at least 0.001% of the additive genetic variance in overlapping and non-overlapping windows 
of five sizes 

Window size1) Type
Distance between SNP and gene (bp)

Total
Inside gene (1 to 2,500) (2,500 to 5,000) (5,000 to 

25,000) >25,000 

SW 1 Overlap 16,677 2,229 1,434 6,098 17,056 43,494
 Non-overlap 16,724 2,240 1,437 6,113 17,102 43,616
SW 10 Overlap 20,134 2,703 1,675 7,439 20,317 52,268
 Non-overlap 17,282 2,329 1,435 6,298 17,267 44,611
SW 30 Overlap 21,738 2,932 1,834 8,038 22,078 56,620
 Non-overlap 19,604 2,677 1,683 7,190 19,842 50,996
SW 50 Overlap 21,650 2,916 1,833 7,944 21,894 56,237
 Non-overlap 19,793 2,634 1,679 7,236 20,093 51,435
SW 100 Overlap 20,855 2,747 1,765 7,561 21,598 54,526

Non-overlap 19,168 2,528 1,635 7,026 19,663 50,020

SNP, single nucleotide polymorphism.
1) SW1, SW10, SW30, SW50, SW100 means either overlapping or non-overlapping window size of 1, 10, 30, 50, 100 SNP.

Table 2. Number of genes for semen traits explaining at least 0.001% of the additive genetic variance in overlapping and non-overlapping windows 
of five sizes 

Window size1) Type
Distance between SNP and gene (bp)

Total
Inside gene (1 to 2,500) (2,500 to 5,000) (5,000 to 25,000) >25,000 

SW 1 Overlap 6,692 1,563 840 1,882 422 11,399
 Non-overlap 6,706 1,569 841 1,884 425 11,425
SW 10 Overlap 8,040 1,838 969 2,346 498 13,691
 Non-overlap 6,911 1,611 819 1,997 444 11,782
SW 30 Overlap 8,596 2,009 1,067 2,522 534 14,728
 Non-overlap 7,784 1,845 970 2,292 505 13,396
SW 50 Overlap 8,610 2,007 1,065 2,490 529 14,701
 Non-overlap 7,889 1,823 981 2,288 486 13,467
SW 100 Overlap 8,209 1,878 1,024 2,401 528 14,040

Non-overlap 7,543 1,730 953 2,244 488 12,958

SNP, single nucleotide polymorphism.
1) SW1, SW10, SW30, SW50, SW100 means either overlapping or non-overlapping window size of 1, 10, 30, 50, 100 SNP.
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than non-overlapping windows across all five window sizes. 
These differences may be due to the methods used to tally 
numbers of SNP in overlapping and non-overlapping win-
dows. In the case of overlapping windows, the analysis 
involved multiple consecutive SNPs, whereas non-overlap-
ping windows were created by summing the number of 
SNPs within each window size. These methodological differ-
ences influenced the identification of both the number of 
SNPs and the genes whose alleles are likely inherited together. 
However, research in livestock and humans found that hap-
lotype analyses were superior to individual SNP analyses 
[25-28]. Further, a study involving Nelore cattle [5] found 
that haplotypes of five different sizes (SW3, SW5, SW7, 
SW9, SW11) detected more QTLs than single SNPs. Lastly, 
research on human diseases reported that overlapping win-
dows performed better than non-overlapping windows [29].

Biological pathways in overlapping and non-
overlapping SNP windows of five sizes
All genes determined to be associated with VOL, NS, and 
MOT using SNP markers from overlapping and non-over-
lapping SW, SW10, SW30, SW50, and SW100 (Table 2) were 
utilized to identify biological pathways in the Thai multibreed 
dairy population. This analysis utilized Bos taurus information 
from the KEGG database and the ClueGo plugin of Cyto-
scape [23]. 
 Table 3 presents the number of biological pathways and 
the number of genes within those pathways in common 
across overlapping and non-overlapping SW1, SW10, SW30, 
SW50, and SW100 for VOL, NS, and MOT using Bos taurus 
information from the KEGG database. Table 3 shows that 
the number of shared biological pathways and genes within 
pathways were lower for overlapping SW1 (8 pathways and 
904 genes) than for non-overlapping SW1 (9 pathways and 
1,049 genes). Conversely, the number of shared biological 
pathways and genes within pathways were higher for over-

lapping than non-overlapping SW10 (9 pathways and 1,052 
genes vs 5 pathways and 533 genes), SW30 (11 pathways 
and 1,343 genes vs 7 pathways and 1,048 genes), SW50 (10 
pathways and 1,351 genes vs 8 pathways and 1,096 genes), 
and SW100 (10 pathways and 1,327 genes vs 6 pathways and 
817 genes). These results showed that overlapping SNP win-
dows consistently yielded a higher number of shared biological 
pathways and genes than non-overlapping SNP windows, 
indicating that overlapping windows should be preferred to 
capture genetic interactions and regulatory mechanisms for 
the three semen traits in the Thai multibreed dairy popula-
tion. These sets of SNPs are associated with genes that influence 
the modulation of biological pathways affecting semen traits, 
thus they could be incorporated into customized genotyping 
chips. This would enhance the accuracy of genomic selec-
tion for semen production traits in Thailand.
 Among overlapping windows, the highest number of bio-
logical pathways associated with VOL, NS, and MOT was 
observed in SW30 (11 pathways), followed by SW50 (10 
pathways), 100 (10 pathways), SW10 (9 pathways), and SW1 
(8 pathways). Among non-overlapping windows, SW1 cap-
tured the most comprehensive set of pathways contributing 
to VOL, NS, and MOT (9 pathways), followed by SW50 (8 
pathways), SW30 (7 pathways), SW100 (6 pathways), and 
SW10 (5 pathways). The biological pathways involving genes 
associated with semen traits are shown in Supplementary 
Table 1 for overlapping windows and Supplementary Table 2 
for non-overlapping windows. 
 Similarly, the highest number of genes within shared bio-
logical pathways associated with VOL, NS, and MOT were 
observed in overlapping SW50 (1,351 genes), followed by 
SW30 (1,343 genes), SW100 (1,327 genes), SW10 (1,052 
genes), and SW1 (904 genes). Conversely, for non-overlap-
ping windows, the largest number of genes within shared 
pathways influencing VOL, NS, and MOT occurred in 
SW50 (1,096 genes), followed by SW1 (1,049 genes), SW30 

Table 3. Number of biological pathways (NP) and number of genes in biological pathways (NG) in common across overlapping and non-overlapping 
SNP windows of five sizes for semen traits

Window size1) Type
SW1 SW10 SW30 SW50 SW100

NP NG NP NG NP NG NP NG NP NG

SW 1 Overlap 8 904
 Non-overlap 9 1,049
SW 10 Overlap 4 421 9 1,052
 Non-overlap 2 280 5 533
SW 30 Overlap 5 511 6 364 11 1,343
 Non-overlap 6 524 2 336 7 1,048
SW 50 Overlap 4 505 5 635 10 1021 10 1,351
 Non-overlap 6 503 2 337 6 726 8 1,096
SW 100 Overlap 5 494 4 591 7 860 7 889 10 1,327

Non-overlap 4 409 2 334 5 625 6 664 6 817
1) SW1, SW10, SW30, SW50, SW100 means either overlapping or non-overlapping window size of 1, 10, 30, 50, 100 SNP.
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(1,048 genes), SW100 (817 genes), and SW10 (533 genes). 
Thus, overlapping SNP windows in general, and SW50 in 
particular, were the most effective to capture genes within 
shared pathways contributing to the three semen traits, high-
lighting the potential biological relevance of these genes to 
VOL, NS, and MOT. Conversely, non-overlapping SNP win-
dows identified smaller number genes within shared pathways 
affecting VOL, NS, and MOT, particularly SW10. These 
numbers indicate that overlapping SNP windows in general, 
and SW30 and SW50 in particular, should be preferred to 
maximize the identification of pathways and genes.
 Findings here emphasize the importance of evaluating 
overlapping and non-overlapping windows of various sizes 
when determining biological pathways and genes associated 
with complex traits. Although medium sized overlapping 
windows (SW30 and SW50) were the most effective to cap-
ture a broader range of shared pathways and genes, this may 
not be the case in other populations; hence the need for as-
sessing the effectiveness of various overlapping and non-
overlapp ing window sizes in each population before choosing 
one for widespread use. 
 In conclusion, this study yielded valuable insights into the 
genetic basis of VOL, NS, and MOT by assessing five sets of 
biological pathways and genes. We identified a substantial 
number of SNP markers that are either within or near genes 
associated with semen traits. Overlapping windows consis-
tently identified a greater number of shared biological pathways 
and genes than non-overlapping windows. Knowledge of 
these shared pathways and genes enhance our understand-
ing of the biological processes involved in these traits and 
contribute to the development of increasingly more effective 
strategies for genetic improvement of semen traits in the 
Thai multibreed dairy population.
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