DOI QR코드

DOI QR Code

Optimal Design of 70GHz Band Array Antenna for Short-Range Radar Sensor using The Chebyshev Polynomials

Chebyshev 다항식을 이용한 70GHz 대역 근거리 레이다 센서용 배열안테나의 최적설계

  • Gue-Chol Kim (Dept. of Marine Electronics, Communication, Computer Engineering, Mokpo National Maritime University) ;
  • Joo-Suk Kim
  • 김규철 (목포해양대학교 해양전자통신컴퓨터공학과) ;
  • 김주석 (목포해양대학교 해양전자통신컴퓨터공학과)
  • Received : 2023.11.04
  • Accepted : 2024.02.17
  • Published : 2024.02.29

Abstract

This paper presents a procedure to optimize the design of 70GHz band array antenna for automotive short range radar sensor applications using Chebyshev polynomials. SRR(: Short Range Radar) systems require a wide angle width and low Side lobe level to detect targets within close proximity while ensuring a high Field of View(FoV). The optimized antenna operates in the 76 to 81GHz frequency range, and to reduce the antenna size, we arranged 12 patches in series, achieving an SLL of 10dB, angle with of 112.5o, gain of 15.4dB and an input return loss of less than -10dB at 78GHz. In this paper, we proceed with antenna design for SRR using Chebyshev polynomials, and present an optimal design for antenna structures to be used in MRR(: Medium-Range Radar) and LRR(: Long Range Radar) applications based on this paper

본 논문에서는 Chebyshev 다항식을 이용해서 차량용 근거리 레이다에서 사용하는 70GHz 대역 배열안테나를 최적 설계하였다. SRR(: Short Range Radar)에서는 근거리 내에 물표를 검출하면서 높은 FoV(: Field of View)를 확보하기 위한 빔폭과 낮은 SLL(: Side lobe level)을 가져야 한다. 최적 설계된 안테나는 76~81GHz에서 동작하며 안테나의 크기를 소형으로 하기 위해 12개의 패치를 직렬로 배열하여 구성하였고, 78GHz에서 SLL - 10dB이하, 안테나의 이득 15.4dB를 만족하고 빔폭 112.5o, 입력반사계수 -10dB이하의 성능을 갖는다. 본 논문에서는 Chebyshev 다항식을 이용해서 SRR을 위한 안테나의 설계를 진행하고 이를 기반으로 MRR과 LRR에 사용될 안테나 구조 설계를 위한 최적 설계법을 제시한다.

Keywords

References

  1. H. L. Bloecher, J. Dickmann, and M. Andres, "Automotive active safety & comfort functions using radar," In Proc. IEEE Int. Conf. Ultra-Wideband, Vancouver, BC, Canada, Sept. 2009, pp. 490-494. 
  2. T. Binzer, M. Klar, and V. Gross, "Development of 77GHz radar lens antenna for automotive applications based on given requirements," In Proc. ITG Conf. Antennas, Vancouver, Canada, Mar. 2007, pp. 205-209. 
  3. E. Park and I. Jung, "Design of series-fed microstrip patch array antennas for monopulse radar sensor applications," J. of the Korea Institute of Electromagnetic Engineering and Science, vol. 21, no. 11, 2010, pp. 1248-1253.  https://doi.org/10.5515/KJKIEES.2010.21.11.1248
  4. K. Lee and Y. Kim, "Design of 24 GHz Patch Array Antenna for Detecting Obstacles," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, 2008, pp. 31-38. 
  5. J. Kim and G. Kim, "Design of high gain array antenna for 70GHz band short range radar sensor," In Proc. of the korean Institute of information and communication Sciences. Conf., Jinju, Korea, May 2018, pp. 402-403. 
  6. G. Kim, "Design of slotted waveguide antenna with slot depth variation," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 4, 2013, pp. 535-540.  https://doi.org/10.13067/JKIECS.2013.8.4.535
  7. J. Yoon, "Design and Fabrication of Dual Linear Polarization Antenna for 28GHz Band," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 1, 2022, pp. 13-21 
  8. T. Kim and S. Hwang "Cascade AOA Estimation Algorithm Based n FMCCA Antenna," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, 2021, pp. 1081-1088 
  9. J. La and J. Choi "Development of Wideband Frequency Modulated Laser for High Resolution FMCW LiDAR Sensor," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, 2023, pp. 1023-1030 
  10. D. Moon, S. Ahn, M. Park, and C. Jung, "A study on microstrip array antenna for LMDS Receiver with corporate feeding network using chebyshev polynomials," J. of the Korea Institute of Electromagnetic Engineering and Science, vol. 13, no. 8, 2002, pp. 827-883. 
  11. R. C. Johnson, Antenna Engineering Handbook 3rdEd. New York: McGrawHill, 1993. 
  12. D. M. Pozar, Microwave Engineering, 3rdEd, Newyork: Wiley, 1993. 
  13. Milligan, T. A, Modern antenna Design, New York: McGrawHil, 1986. 
  14. J. Kim, K. Hwang, and J. Shin, "Series-Fed microstrip array antenna for Milimeter-wave applications," J. of the Korea Institute of Electromagnetic Engineering and Science, vol. 22, no. 12, 2011, pp. 1176-1179. https://doi.org/10.5515/KJKIEES.2011.22.12.1176