DOI QR코드

DOI QR Code

Systematic study on temperature and time-varying characteristics of SiC MOSFET static parameters at 200 ℃

  • Xiao Ma (School of Electric Engineering and Automation, Hefei University of Technology) ;
  • Jianing Wang (School of Electric Engineering and Automation, Hefei University of Technology) ;
  • Lijian Ding (School of Electric Engineering and Automation, Hefei University of Technology)
  • Received : 2023.03.27
  • Accepted : 2023.10.06
  • Published : 2024.02.20

Abstract

Silicon carbide (SiC) devices can be used in high-temperature conditions due to advancements in packaging technology and manufacturing processes. However, a systematic evaluation of SiC device performances at high temperatures is necessary. First, this study implements a number of static tests on SiC MOSFETs from several manufacturers in environments up to 230 ℃ to obtain the variation patterns of SiC MOSFET static parameters at different temperatures and to characterize the static properties of SiC MOSFETs at high temperatures. Second, the long-term high-temperature tolerances of 200 ℃ devices and 175 ℃ conventional commercial devices are compared. Static test results at different aging stages show that the performance for each device type changes to different degrees at high temperatures. However, these devices have recovery characteristics during the process of cooling to room temperature. Finally, the static parameter characteristics of SiC MOSFETs are summarized in terms of time and temperature to provide a theoretical basis for applying SiC power devices at high temperatures.

Keywords

Acknowledgement

This work is supported by the Institute of Energy of Hefei Comprehensive National Science Center under Grant 21KZS203.

References

  1. Rabkowski, J.: Silicon carbide power transistors: a new era in power electronics is initiated. Ind. Electron. Mag. IEEE. 6(2), 17-26 (2012) https://doi.org/10.1109/MIE.2012.2193291
  2. Ugur, E., et al.: Degradation assessment and precursor identification for SiC MOSFETs under high temp cycling. IEEE Trans. Ind. Appl. 55(3), 2858-2867 (2019) https://doi.org/10.1109/TIA.2019.2891214
  3. Aichinger, T., et al.: Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron. Reliab. 80, 68-78 (2018) https://doi.org/10.1016/j.microrel.2017.11.020
  4. Abuelnaga, A., Narimani, M., Bahman, A.S.: Power electronic converter reliability and prognosis review focusing on power switch module failures. J. Power Electron. 2, 1-16 (2021)
  5. Zhou, W., Zhong, X., Sheng, K.: High temperature stability and the performance degradation of SiC MOSFETs. IEEE Trans. Power Electronics. 29(5), 2329-2337 (2014) https://doi.org/10.1109/TPEL.2013.2283509
  6. Lelis, A.J., Green, R., Habersat, D.B.: High-temperature reliability of SiC power MOSFETs. Mater. Sci. Forum 679-680, 599-602 (2011) https://doi.org/10.4028/www.scientific.net/MSF.679-680.599
  7. Zheng, C., Yao, Y., Danilovic, M. et al.: Performance evaluation of SiC power MOSFETs for high-temperature applications. Power Electronics & Motion Control Conference. IEEE, (2013)
  8. Yang, L., et al.: High temperature gate-bias and reverse-bias tests on SiC MOSFETs. Microelectron. Reliab. 53, 1771-1773 (2013) https://doi.org/10.1016/j.microrel.2013.07.065
  9. Henn, J., et al.: Intelligent gate drivers for future power converters. IEEE Trans. Power Electron. 37(3), 3484-3503 (2022) https://doi.org/10.1109/TPEL.2021.3112337
  10. Lelis, A.J., et al.: Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron Dev. 62(2), 316-323 (2015) https://doi.org/10.1109/TED.2014.2356172
  11. Green, R., Lelis, A.J., El, M.: A study of high temperature DC and AC gate stressing on the performance and reliability of power SiC MOSFETs. In: Silicon carbide and related materials 2012: 9th European conference on silicon carbide and related materials, 549-552 (2013)
  12. Puschkarsky, K., et al.: Understanding BTI in SiC MOSFETs and its impact on circuit operation. IEEE Trans. Dev. Mater. Reliab. 18, 144-153 (2018) https://doi.org/10.1109/TDMR.2018.2813063
  13. Schuderer, J., Vemulapati, U., Traub, F.: Packaging SiC power semiconductors-challenges, technologies and strategies. In: Wide Bandgap Power Devices and Applications (WiPDA), 2014 IEEE Workshop on. IEEE (2014)
  14. Ni, Z., Lyu, X., Yadav, O.P., et al.: Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power Electron. 35(8), 7765-7794 (2019)
  15. Ouaida, R., Calvez, C., Podlejski, A.S., et al.: Evolution of electrical performance in new generation of SiC MOSFET for high temperature applications. In: International Conference on Integrated Power Systems. VDE, (2014)
  16. Dimarino, C., Zheng, C., Danilovic, M., et al.: High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs. In: Energy Conversion Congress & Exposition. IEEE, (2013)
  17. Tian, K., Qi, J., Mao, Z., et al.: Characterization of 1.2 kV 4H-SiC power MOSFETs and Si IGBTs at cryogenic and high temperatures. In: 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, (2018)
  18. Tian, K., Hallen, A., Qi, J., et al.: Comprehensive characterization of the 4H-SiC planar and trench gate MOSFETs from cryogenic to high temperature. IEEE Trans. Electron Dev. 66(10), 4279-4286 (2019) https://doi.org/10.1109/TED.2019.2934507
  19. Ravinchandra, K., Tan, K., Thiruchelvam, V.: Review of electrical characteristics for wide band-gap power devices. In: IEEE Energy Conversion Congress & Exposition-Asia IEEE, (2021)
  20. Ning, P., Wang, F., Ngo, K.D.: High-temperature SiC power module electrical evaluation procedure. IEEE Trans. Power Electron. 26(11), 3079-3083 (2011) https://doi.org/10.1109/TPEL.2011.2151879
  21. Chen, Y., et al.: High-temperature characterizations of a halfbridge wire-bondless SiC MOSFET module. IEEE J. Electron. Dev. Soc. 9, 966-971 (2021) https://doi.org/10.1109/JEDS.2021.3119428
  22. Barlini, D., Ciappa, M., Mermet-Guyennet, M., Fichtner, W.: Measurement of the transient junction temperature in MOSFET devices under operating conditions. Microelectron. Reliab. 47, 1707-1712 (2007) https://doi.org/10.1016/j.microrel.2007.07.008
  23. Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R.: Semiconductor power devices. In: Physics, characteristics, reliability, 2nd edn., pp. 1-6. Springer-Verlag, Berlin Heidelberg (2018)
  24. Rumyantsev, S.L., Shur, M.S., Levinshtein, M.E., et al.: Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures. Semicond. Sci. Technol. 24(7), 075011 (2009)
  25. Chen, S., Cai, C., Tao, W., et al.: Cryogenic and high temperature performance of 4H-SiC power MOSFETs. In: Twenty-eighth IEEE Applied Power Electronics Conference & Exposition. IEEE, (2013)
  26. Schmidt, R., Werner, R., Casady, J., et al.: Power cycle testing of sintered SiC-MOSFETs. In: PCIM Europe 2017. VDE, (2017)
  27. Singh, R., Baliga, B.J.: Power MOSFET analysis/optimization for cryogenic operation including the effect of degradation in breakdown voltage. In: Power Semiconductor Devices and ICs, 1992. ISPSD'92. Proceedings of the 4th International Symposium on. IEEE, (1992)
  28. Bartsch, W., Schrner, R., Dohnke, K.O.: Optimization of bipolar SiC-diodes by analysis of avalanche breakdown performance, pp. 909-912. Trans Tech Publications Ltd (2010)
  29. Liu, F., Du, M., Yin, J., et al.: Correction method for calculating junction temperature considering parasitic effects in SiC MOSFETs. J. Power Electron. 23, 688-699 (2022)
  30. Gonzalez, J. O., Alatise, O.: Challenges of junction temperature sensing in SiC power MOSFETs. In: 10th International Conference on Power Electronics-ECCE Asia (2019)
  31. Yang, F., Ugur, E., Akin, B.: Evaluation of aging's effect on temperature-sensitive electrical parameters in SiC mosfets. IEEE Trans. Power Electron. 35(6), 6315–6331 (2020) https://doi.org/10.1109/TPEL.2019.2950311