Acknowledgement
본 논문은 잠수함용 지능형 임무지원시스템 통합자동화 기술 사업을 통해 수행된 연구입니다. (계약번호 : KRIT-CT-22-023-01)
References
- R. J. Urick, Principles of Underwater Sound, 3rd Edition (McGraw-Hill, New York, 1983), pp. 332-345.
- R. O. Nielsen, Sonar Signal Processing (Artech House, Norwood, 1991), pp. 95, 173-175.
- A. Kummert, "Fuzzy technology implemented in sonar systems," IEEE J. Ocean. Eng. 18, 483-490 (1993). https://doi.org/10.1109/48.262298
- J. S. Kim, S. B. Hwang, and C. M. Lee, "A DEMON processing robust to interference of tonals" (in Korean), J. Acoust. Soc. Kr. 31, 384-390 (2012). https://doi.org/10.7776/ASK.2012.31.6.384
- M. J. Cheong, S. B. Hwang, S. W. Lee, and J. S. Kim, "Multiband enhancement for DEMON processing algorithms" (in Korean), J. Acoust. Soc. Kr. 32, 138-146 (2013). https://doi.org/10.7776/ASK.2013.32.2.138
- S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, "Image segmentation using deep learning: a survey," IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523-3542
- F. Lateef and Y. Ruichek, "Survey on semantic segmentation using deep learning techniques," Neurocomputing, 338, 321-348 (2019). https://doi.org/10.1016/j.neucom.2019.02.003
- W. Shin, H. Sul, J. W. Choi, T.-L. Song, D.-S. Kim, and H. Ko, "DeepNetwork-based segmentation model for low detectable underwater target tracking" (in Korean), J. Inst. Electron. Info. Eng. 60, 27-36 (2023).
- C. Jin, M. Kim, S. Jang, and D.-G. Paeng, "Semantic segmentation-based whistle extraction of Indo-Pacific Bottlenose Dolphin residing at the coast of Jeju island," Ecological Indicators, 137, 108792 (2022).
- R. O. Nielsen, "Cramer-Rao lower bounds for sonar broad-band modulation parameters," IEEE J. Ocean. Eng. 24, 285-290 (1999). https://doi.org/10.1109/48.775290
- M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103 (2012). https://doi.org/10.1121/1.3664100
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: convolutional networks for biomedical image segmentation," Proc. MICCAI, 234-241 (2015).
- Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, "UNet++: a nested u-net architecture for medical image segmentation," Proc. DLMIA, 3-11 (2018).
- L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoder-decoder with atrous separable convolution for semantic image segmentation," Proc. ECCV, 801-818 (2018).
- F. Chollet, "Xception: deep learning with depthwise separable convolutions," Proc. CVPR, 1251-1258 (2017).
- M. Irfan, Z. Jiangbin, S. Ali, M. Iqbal, Z. Masood, and U. Hamid, "DeepShip: an underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification," Expert Syst. Appl. 183, 115270 (2021).