DOI QR코드

DOI QR Code

Enhanced Supercapacitive Charge Storage in a Nickel Oxide-Graphene Oxide Composite: Synergistic Effect

  • Shital Bachankar (Department of Intelligent Electronics and Computer Engineering, Chonnam National University) ;
  • Aditi Kumbhar (Department of Intelligent Electronics and Computer Engineering, Chonnam National University) ;
  • Shaupik Mullani (Department of Intelligent Electronics and Computer Engineering, Chonnam National University) ;
  • Dhanaji Malavekar (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jaehyung Park (Department of Intelligent Electronics and Computer Engineering, Chonnam National University) ;
  • Chihoon Kim (Department of Electronics and Computer Engineering, Chonnam National University) ;
  • Taeksoo Ji (Department of Intelligent Electronics and Computer Engineering, Chonnam National University)
  • Received : 2024.08.17
  • Accepted : 2024.12.19
  • Published : 2024.12.27

Abstract

As the pace of technological advances accelerates, the role of electrical energy storage has become increasingly important. Among various storage solutions, supercapacitors are garnering significant attention. Their unique attributes, including high power density, rapid charge/discharge capabilities, and extended lifecycle, position them as a promising alternative to conventional batteries. This study investigates the synthesis of a nickel oxide (NiO) and nickel oxide/graphene oxide (NiO/GO) composite using a single-step hydrothermal method, to evaluate their potential as supercapacitor electrode materials. The synthesized NiO, graphene oxide (GO), and NiO/GO composite were comprehensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy to analyze their crystal structures and chemical bonding. The XRD analysis confirmed the formation of an NiO phase with a rhombohedral crystal structure, and no change after GO incorporation. SEM analysis revealed the formation of spherical NiO particles and porous morphology of the NiO/GO composite, which also exhibited a spherical shape. The GO displayed a randomly arranged wrinkled sheet-like structure. Electrochemical analysis of the NiO/GO composite exhibited a remarkable specific capacitance of 893 F g-1 at a current density of 1 A g-1, surpassing that of NiO and GO alone, demonstrating NiO/GO has promising performance for supercapacitor applications. The charge transfer resistance, derived from the Nyquist plot, suggests that the reduction in charge transfer resistance contributed significantly to the improved capacitance. Additional stability studies of over 5,000 cycles at 5 A g-1 revealed an 85 % initial capacitance retention, confirming the advantages of GO inclusion to improve material retention for superior long-term performance. The asymmetric supercapacitor (ASC) assembled using an electrode with the configuration NiO/GO//activated carbon (AC) showed a specific capacitance of 77.8 F g-1 obtained at a current density of 0.5 A g-1.

Keywords

Acknowledgement

This work was supported by Innovative Human Resource Development for Local Intellectualization program through the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (IITP-2024-RS-2022-00156287).

References

  1. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang, Nat. Commun., 4, 1894 (2013). https://doi.org/10.1038/ncomms2932
  2. Z. Hu, Y. Miao, X. Xue, B. Xiao, J. Qi, F. Wei, Q. Meng, Y. Sui, Z. Sun and J. Liu, J. Colloid Interface Sci., 599, 34 (2021). https://doi.org/10.1016/j.jcis.2021.04.085
  3. V. C. Lokhande, T. Hussain, A. R. Shelke, A. C. Lokhande and T. Ji, Chem. Eng. J., 424, 130557 (2021). https://doi.org/10.1016/j.cej.2021.130557
  4. D. B. Malavekar, V. V. Magdum, S. D. Khot, J. H. Kim and C. D. Lokhande, J. Alloys Compd., 960, 170601 (2023). https://doi.org/10.1016/j.jallcom.2023.170601
  5. D. Malavekar, S. Pujari, S. Jang, S. B. Bachankar and J. H. Kim, Small, 20, 2312179 (2024). https://doi.org/10.1002/smll.202312179
  6. P. P. Bagwade, D. B. Malavekar, T. T. Ghogare, S. B. Ubale, V. J. Mane, R. N. Bulakhe, I. In and C. D. Lokhande, J. Alloys Compd., 859, 157829 (2021). https://doi.org/10.1016/j.jallcom.2020.157829
  7. V. Lokhande, A. Lokhande, G. Namkoong, J. H. Kim and T. Ji, Results Phys., 12, 2012 (2019). https://doi.org/10.1016/j.rinp.2019.02.012
  8. D. C. Pawar, D. B. Malavekar, S. D. Khot, A. G. Bagde and C. D. Lokhande, Mater. Sci. Eng., B, 292, 116432 (2023).
  9. A. Mohanty, D. P. Jaihindh, Y.-P. Fu, S. P. Senanayak, L. S. Mende and A. Ramadoss, J. Power Sources, 488, 229444 (2021). https://doi.org/10.1016/j.jpowsour.2020.229444
  10. H. W. Park and K. C. Roh, J. Power Sources, 557, 232558 (2023). https://doi.org/10.1016/j.jpowsour.2022.232558
  11. S. Bachankar, D. Malavekar, V. Lokhande and T. Ji, J. Alloys Compd., 1003, 175708 (2024). https://doi.org/10.1016/j.jallcom.2024.175708
  12. A. M. Mohamed and N. K. Allam, J. Energy Storage, 47, 103565 (2022). https://doi.org/10.1016/j.est.2021.103565
  13. S. A. Delbari, L. S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A. S. Namini, Q. V. Le, M. Shokouhimehr, M. Shahedi Asl and M. Mohammadi, J. Alloys Compd., 857, 158281 (2021). https://doi.org/10.1016/j.jallcom.2020.158281
  14. C. Zhou, X. Wu, C. Luo, Z. Liu, L. Wang, C. Yang and H. Yu, Sustain. Mater. Technol., 40, e00891 (2024). https://doi.org/10.1016/j.susmat.2024.e00891
  15. M. Aalim and M. A. Shah, Vacuum, 210, 111903 (2023). https://doi.org/10.1016/j.vacuum.2023.111903
  16. C. R. Babu, A. V. Avani, T. S. Xavier, M. Tomy, S. Shaji and E. I. Anila, J. Energy Storage, 80, 110382 (2024). https://doi.org/10.1016/j.est.2023.110382
  17. A. Shah, S. Senapati, H. C. A. Murthy, L. R. Singh and M. Mahato, ACS Omega, 8, 33380 (2023). https://doi.org/10.1021/acsomega.3c03044
  18. M. A. Alsharif, A. Alatawi, T. A. Hamdalla, S. Alfadhli and A. A. A. Darwish, Sci. Rep., 13, 22321 (2023). https://doi.org/10.1038/s41598-023-49760-4
  19. P. M. Shafi, V. Ganesh and A. C. Bose, ACS Appl. Energy Mater., 1, 2802 (2018). https://doi.org/10.1021/acsaem.8b00459
  20. R. Joy and S. Haridas, Polym. Bull., 81, 2129 (2024). https://doi.org/10.1007/s00289-023-04810-9
  21. J. Shen, Q. Wang, K. Zhang, S. Wang, L. Li, S. Dong, S. Zhao, J. Chen, R. Sun, Y. Wang, Z. Jian and W. Zhang, Electrochim. Acta, 320, 134578 (2019). https://doi.org/10.1016/j.electacta.2019.134578
  22. A. Pullanchiyodan, R. Joy, P. Sreeram, L. R. Raphael, A. Das, N. T. M. Balakrishnan, J.-H. Ahn, A. Vlad, S. Sreejith and P. Raghavan, Energy Adv., 2, 922 (2023). https://doi.org/10.1039/D3YA00067B
  23. S. Muduli, S. K. Pati, T. K. Pani and S. K. Martha, J. Energy Storage, 66, 107339 (2023). https://doi.org/10.1016/j.est.2023.107339
  24. V. M. Kumar, S. R. Polaki, R. Krishnan, R. M. Sarguna and T. Mathews, J. Alloys Compd., 931, 167420 (2023). https://doi.org/10.1016/j.jallcom.2022.167420
  25. D. B. Malavekar, R. N. Bulakhe, S. B. Kale, U. M. Patil, I. In and C. D. Lokhande, J. Alloys Compd., 869, 159198 (2021). https://doi.org/10.1016/j.jallcom.2021.159198
  26. B. Hu, C. Xu, M. K. Aslam, Y. Cen, J. Hu, Y. Li, Y. Liu, C. Guo, D. Yu and C. Chen, Chem. Eng. J., 389, 123534 (2020). https://doi.org/10.1016/j.cej.2019.123534
  27. D. B. Malavekar, S. B. Kale, V. C. Lokhande, U. M. Patil, J. H. Kim and C. D. Lokhande, J. Phys. Chem. C, 124, 28395 (2020). https://doi.org/10.1021/acs.jpcc.0c08454
  28. Q. Hu, F. Zhu, R. Li, M. Du, Y. Meng and Y. Zhang, Ionics, 25, 5759 (2019). https://doi.org/10.1007/s11581-019-03130-1
  29. P. E. Saranya and S. Selladurai, New J. Chem., 43, 7441 (2019). https://doi.org/10.1039/C9NJ00097F
  30. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos and M. Pärs, J. Phys.:Conf. Ser., 93, 012039 (2007).
  31. J. Qiu, T. H. Nguyen, S. Kim, Y. J. Lee, M.-T. Song, W.-J. Huang, X.-B. Chen, T. M. H. Nguyen and I.-S. Yang, Spectrochim. Acta, Part A, 280, 121498 (2022).
  32. A. Y. Lee, K. Yang, N. D. Anh, C. Park, S. M. Lee, T. G. Lee and M. S. Jeong, Appl. Surf. Sci., 536, 147990 (2021). https://doi.org/10.1016/j.apsusc.2020.147990
  33. Y. Wang, B. Hu, J. Luo, Y. Gu and X. Liu, ACS Appl. Energy Mater., 4, 7721 (2021). https://doi.org/10.1021/acsaem.1c01087
  34. K. A. Sree Raj, K. Pramoda and C. S. Rout, J. Mater. Chem. C, 11, 2565 (2023). https://doi.org/10.1039/D2TC04600H
  35. S. S. Pujari, S. A. Kadam, Y.-R. Ma, S. B. Jadhav, S. S. Kumbhar, S. B. Bhosale, V. V. Patil, J. L. Gunjakar, C. D. Lokhande and U. M. Patil, Sustain. Energy Fuels, 6, 5608 (2022). https://doi.org/10.1039/D2SE00978A
  36. J. Yu, M. Liu, B. Wang, C. Liang, X. Wang, K. Wang and Q. Lu, ChemSusChem, e202401076 (2024).
  37. A. Xia, J. Li, X. Zeng, J. Chen and G. Tan, Ceram. Int., 50, 13061 (2024). https://doi.org/10.1016/j.ceramint.2024.01.216
  38. M. Karbak, O. Boujibar, S. Lahmar, G. Ah-lung, C. Autret Lambert, T. Chafik and F. Ghamouss, Energy Technol., 11, 2201243 (2023). https://doi.org/10.1002/ente.202201243
  39. S. Tamang, S. Rai, M. K. Mondal, N. K. Bhattacharyya, R. Singh, S. K. Mukherjee and J. Biswas, J. Mol. Struct., 1315, 138865 (2024). https://doi.org/10.1016/j.molstruc.2024.138865
  40. M. Arunpandian, K. Selvakumar, E. R. Nagarajan and T. H. Oh, Diamond Relat. Mater., 139, 110383 (2023). https://doi.org/10.1016/j.diamond.2023.110383
  41. W. Gao, Y. Li, J. Zhao, Z. Zhang, W. Tang, J. Wang, Z. Wu and Z. Li, Chem. Res. Chin. Univ., 38, 1097 (2022). https://doi.org/10.1007/s40242-022-1442-1
  42. J. Vigneshwaran, S. Abraham, B. Muniyandi, T. Prasan-kumar, J.-T. Li and S. Jose, Surf. Interfaces, 27, 101572 (2021). https://doi.org/10.1016/j.surfin.2021.101572
  43. Y. Wang, Z. Du, J. Xiao, W. Cen and S. Yuan, Electrochim. Acta, 386, 138486 (2021). https://doi.org/10.1016/j.electacta.2021.138486
  44. G. Duan, H. Zhang, C. Zhang, S. Jiang and H. Hou, Chinese Chem. Lett., 34, 108283 (2023). https://doi.org/10.1016/j.cclet.2023.108283
  45. A. Agrawal, A. Kumar and A. Gaur, J. Energy Storage, 56, 105990 (2022). https://doi.org/10.1016/j.est.2022.105990
  46. V. M. A. Chavan, C. Manjunatha, K. P. Shwetha, G. Shireesha, S. G. Kumar, M. K. S. Kamath, S. Malik and A. Khosla, Mater. Chem. Phys., 308, 128209 (2023). https://doi.org/10.1016/j.matchemphys.2023.128209
  47. A. Karthikeyan and R. Mariappan, J. Alloys Compd., 968, 172094 (2023). https://doi.org/10.1016/j.jallcom.2023.172094
  48. S. Kalpana, V. S. Bhat, G. Hegde, T. Niranjana Prabhu and P. N. Anantharamaiah, Inorg. Chem. Commun., 154, 110984 (2023). https://doi.org/10.1016/j.inoche.2023.110984