DOI QR코드

DOI QR Code

Development of a Temperature Sensor for OLED Degradation Compensation Embedded in a-IGZO TFT-based OLED Display Pixel

a-IGZO TFT 기반 OLED 디스플레이 화소에 내장되는 OLED 열화 보상용 온도 센서의 개발

  • Seung Jae Moon (Department of Semiconductor Engineering, Hoseo University) ;
  • Seong Gyun Kim (Department of Semiconductor Engineering, Hoseo University) ;
  • Se Yong Choi (Department of Semiconductor Engineering, Hoseo University) ;
  • Jang Hoo Lee (Department of Semiconductor Engineering, Hoseo University) ;
  • Jong Mo Lee (Department of Semiconductor Engineering, Hoseo University) ;
  • Byung Seong Bae (Department of Semiconductor Engineering, Hoseo University)
  • 문승재 (호서대학교 반도체공학과) ;
  • 김승균 (호서대학교 반도체공학과) ;
  • 최세용 (호서대학교 반도체공학과) ;
  • 이장후 (호서대학교 반도체공학과) ;
  • 이종모 (호서대학교 반도체공학과) ;
  • 배병성 (호서대학교 반도체공학과)
  • Received : 2024.01.08
  • Accepted : 2024.01.24
  • Published : 2024.01.31

Abstract

The quality of the display can be managed by effectively managing the temperature generated by the panel during use. Conventional display panels rely on an external reference resistor for temperature monitoring. However, this approach is easily affected by external factors such as temperature variations from the driving circuit and chips. These variations reduce reliability, causing complicated mounting owing to the external chip, and cannot monitor the individual pixel temperatures. However, this issue can be simply and efficiently addressed by integrating temperature sensors during the display panel manufacturing process. In this study, we fabricated and analyzed a temperature sensor integrated into an a-IGZO (amorphous indium-gallium-zinc-oxide) TFT array that was to precisely monitor temperature and prevent the deterioration of OLED display pixels. The temperature sensor was positioned on top of the oxide TFT. Simultaneously, it worked as a light shield layer, contributing to the reliability of the oxide. The characteristics of the array with integrated temperature sensors were measured and analyzed while adjusting the temperature in real-time. By integrating a temperature sensor into the TFT array, monitoring the temperature of the display became easier and more accurate. This study could contribute to managing the lifetime of the display.

Keywords

Acknowledgement

본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-004)

References

  1. D. Ji, J. Jang, J. H. Park, D. Kim, Y. S. Rim, D. K. Hwang, and Y. Y. Noh, "Recent progress in the development of backplane thin film transistors for information displays", J. Info. Disp., Vol. 22, No. 1, pp. 1-11, 2021. https://doi.org/10.1080/15980316.2020.1818641
  2. K. Kwak, K. Cho, and S. Kim, "Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy", Opt. Express, Vol. 21, No. 24, pp. 29558-29566, 2013. https://doi.org/10.1364/OE.21.029558
  3. R. Fan, X. Fan, and Z. Tu, "Influence of ambient temperature on OLED lifetime and uniformity based on modified equivalent lifetime detection", J. Soc. Inf. Disp., Vol. 27, No. 10, pp. 597-607, 2019. https://doi.org/10.1002/jsid.788
  4. C. H. Kang, J. H. Kim, H. H. Lee, W. K. Ha, H. S. Kim, and Y. H. Tak, "3.3: Real Time Brightness Compensation for aSi: H TFT Backplane AMOLED", SID Symposium Digest of Technical Papers, Vol. 40, No. 1, pp. 9-11, 2009. https://doi.org/10.1889/1.3256969
  5. T. C. Lu, H. W. Zan, and M. D. Ker, "Temperature coefficient of poly-silicon TFT and its application on voltage reference circuit with temperature compensation in LTPS process", IEEE Trans. Electron Devices, Vol. 55, No. 10, pp. 2583-2589, 2008. https://doi.org/10.1109/TED.2008.2003087
  6. A. Bakker, and J. H. Huijsing, "Micropower CMOS temperature sensor with digital output", IEEE J. Solid-State Circuits, Vol. 31, No. 7, pp. 933-937, 1996. https://doi.org/10.1109/4.508205
  7. L. Yang, Z. G. Chen, M. S. Dargusch, and Jin Zou, "High Performance Thermoelectric Materials: Progress and Their Applications", Adv. Energy Mater., Vol. 8, No. 6, p. 1701797, 2018.
  8. A. S. Fiorillo, C. D. Critello, and S. A. Pullano, "Theory, technology and applications of piezoresistive sensors: A review", Sens. Actuator A Phys., Vol. 281, pp. 156-175, 2018. https://doi.org/10.1016/j.sna.2018.07.006
  9. H. S. Jeon, and B. S. Bae, "Temperature sensor without reference resistor by indium tin oxide and molybdenum", J. Sens. Sci. Technol., Vol. 19, No. 6, pp. 483-489, 2010. https://doi.org/10.5369/JSST.2010.19.6.483
  10. T. Kim, C. H. Choi, J. S. Hur, D. Ha, B. J. Kuh, Y. Kim, M. H. Cho, S. Kim, and J. K. Jeong, "Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips", Adv. Mater., Vol. 35, No. 43, p. 2204663, 2023.
  11. P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, C. S. Fuh, and H. P. D. Shieh, "Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers", IEEE Electron Device lett., Vol. 32, No. 10, pp. 1397-1399,
  12. H. J. Shin and T. W. Kim, "Ultra-high-image-density largesize organic light-emitting devices based on In-Ga-Zn-O thin-film transistors with a coplanar structure", Opt. Express, Vol. 26, No. 13, pp. 16805-16812, 2018. https://doi.org/10.1364/OE.26.016805
  13. H. S. Jeon, S. H. Cho, Y. W. Heo, and B. S. Bae, "Novel Temperature Sensor Fabricated with Oxide and Metal", Materials Science Forum, Vol. 674, pp. 201-206, 2011.  https://doi.org/10.4028/www.scientific.net/MSF.674.201