DOI QR코드

DOI QR Code

Recent Advances and Trends in Filters for Highly Selective Metal Oxide Gas Sensors

산화물 반도체형 가스센서의 선택성 향상을 위한 필터 연구 동향 및 전략

  • Seong-Yong Jeong (Division of Advanced Materials Engineering, Kongju National University)
  • 정성용 (공주대학교 신소재공학부)
  • Received : 2024.01.15
  • Accepted : 2024.01.23
  • Published : 2024.01.31

Abstract

Metal-oxide-based semiconductor gas sensors are widely used because of their advantages, such as high response and simple sensing mechanism. Recently, with the rapid progress in sensor networks, computing power, and microsystem technology, sensor applications are expanding to various fields, such as food quality control, environmental monitoring, healthcare, and artificial olfaction. Therefore, the development of highly selective gas sensors is crucial for practical applications. This article reviews the developments in novel sensor design consisting of sensing films and physical and chemical filters for highly selective gas sensing. Unlike conventional sensors, the sensor structures with filters can separate the sensing and catalytic reactions into independent processes, enabling selective and sensitive gas sensing. The main objectives of this study are directed at introducing the role of various filters in gas-sensing reactions and promising sensor applications. The highly selective gas sensors combined with a functional filter can open new pathways toward the advancement of high-performance gas sensors and electronic noses.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1C1C2009461).

References

  1. J.-H. Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: Overview", Sens. Actuator B-Chem., Vol. 140, No. 1, pp. 319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  2. S.-Y. Jeong, J.-S. Kim, and J.-H. Lee, "Rational Design of Semiconductor-Based Chemiresistors and Their Libraries for Next-Generation Artificial Olfaction", Adv. Mater., Vol. 32, No. 51, pp. 2002075(1)-2002075(47), 2020.
  3. N. Yamazoe, "Toward Innovations of Gas Sensor Technology", Sens. Actuator B Chem., Vol. 108, No. 1-2, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  4. F. Rock, N. Barsan, and U. Weimar, "Electronic nose: current status and future trends", Chem. Rev., Vol 108, No. 2, pp. 705-725, 2008. https://doi.org/10.1021/cr068121q
  5. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, "Detection of CO and O2S Using Tin Oxide Nanowire Sensors", Adv. Mater., Vol. 15, No. 12, pp. 997-1000, 2003. https://doi.org/10.1002/adma.200304889
  6. A. Sanger, S. B. Kang, M. H. Jeong, M. J. Im, I. Y. Choi, C. U. Kim, H. Lee, Y. M. Kwon, J. M. Baik, H. W. Jang, and K. J. Choi, "Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive NO2S Sensors with Full Recovery at Room Temperature", Adv. Sci., Vol. 5, No. 9, pp. 1800816(1)-1800816(8), 2018.
  7. J. Shin, S.-J. Choi, I. Lee, D.-Y. Youn, C. O. Park, J.-H. Lee, H. L. Tuller, and I.-D. Kim, "Thin-Wall Assembled SnO2S Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes", Adv. Funct. Mater., Vol. 23, No. 19, pp. 2357-2367, 2013. https://doi.org/10.1002/adfm.201202729
  8. A. Mirzaei, J.-H. Kim, H. W. Kim, and S. S. Kim, "Resistive-Based Gas Sensors for Detection of Benzene, Toluene and Xylene (BTX) Gases: A Review", J. Mater. Chem. C, Vol. 6, No. 16, pp. 4342-4370, 2018. https://doi.org/10.1039/C8TC00245B
  9. K. B. Kim, Y. K. Moon, T.-H. Kim, B.-H. Yu, H.-Y. Li, Y. C. Kang, and J.-W. Yoon, "Highly Selective and Sensitive Detection of Carcinogenic Benzene using A Raisin Bread-Structured Film Comprising Catalytic Pd-Co3O4 and Gas-Sensing SnO2S Hollow Spheres", Sens. Actuator B Chem., Vol. 386, p. 133750, 2023.
  10. A. T. Guntner, S. Abegg, K. Wegner, and S. E. Pratsinis, "Zeolite Membranes for Highly Selective Formaldehyde Sensors", Sens. Actuator B Chem., Vol. 257, pp. 916-923, 2018. https://doi.org/10.1016/j.snb.2017.11.035
  11. K. Hwang, J. Ahn, I. Cho, K. Kang, K. Kim, J. Choi, K. Polychronopoulou, and I. Park, "Microporous Elastomer Filter Coated with Metal Organic Frameworks for Improved Selectivity and Stability of Metal Oxide Gas Sensors", ACS. Sens., Vol. 12, pp. 13338-13347, 2020.
  12. Z. Wang, S. Zhang, Y. Chen, Z. Zhang, and S. Ma, "Covalent Organic Frameworks for Separation Applications", Chem. Soc. Rev., Vol. 49, No. 3, pp. 708-735, 2020. https://doi.org/10.1039/C9CS00827F
  13. X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, and S. Chen, "Recent Advances in Covalent Organic Frameworks (COFs) as A Smart Sensing Material", Chem. Soc. Rev., Vol. 48, No. 20, pp. 5266-5302, 2019. https://doi.org/10.1039/C9CS00299E
  14. W. C. Ko, M.-S. Kim, Y. J. Kwon, J. Jeong, W. R. Kim, H. Choi, J. K. Park, and Y. K. Jeong, "Two-Dimensional Semiconducting Covalent Organic Nanosheets for Highly Sensitive and Stable NO2S Sensing Under Humid Conditions", J. Mater. Chem. A, Vol. 8, No. 37, pp. 19246-19253, 2020. https://doi.org/10.1039/D0TA07066A
  15. T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, and C. Xie, "Pore Size Dependent Gas-Sensing Selectivity Based on ZnO@ZIF Nanorod Arrays", Sens. Actuator B Chem., Vol. 258, pp. 1099-1106, 2018. https://doi.org/10.1016/j.snb.2017.12.024
  16. H. Tian, H. Fan, M. Li, and L. Ma, "Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor", ACS Sens., Vol. 1, pp. 243-250, 2016. https://doi.org/10.1021/acssensors.5b00236
  17. D.-H. Kim, S. Chong, C. Park, J. Ahn, J.-S. Jang, J. Kim, and I.-D. Kim, "Oxide/ZIF-8 Hybrid Nanofiber Yarns: Heightened Surface Activity for Exceptional Chemiresistive Sensing", Adv. Mater., Vol. 34, No. 10, p. 2105869, 2023.
  18. D. P. Mann, T. Paraskeva, K. F. E. Pratt, I. P. Parkin, and D. E. Williams, "Metal Oxide Semiconductor Gas Sensors Utilizing A Cr-Zeolite Catalytic Layer for Improved Selectivity", Meas. Sci. Technol., Vol. 16, No. 5, pp. 916-1200, 2005. https://doi.org/10.1088/0957-0233/16/5/020
  19. R. Binions, A. Afonja, S. Dungey, D. W. Lewis, I. P. Parkin, and D. E. Williams, "Discrimination Effects in Zeolite Modified Metal Oxide Semiconductor Gas Sensors", IEEE Sens. J., Vol. 11, No. 5, pp. 1145-1151, 2010.
  20. P. Varsani, A. Afonja, D. E. Williams, I. P. Parkin, and R. Binions, "Zeolite-Modified WO3S Gas Sensors - Enhanced Detection of NO2S", Sens. Actuator B Chem., Vol. 160, No. 1, pp. 475-482, 2011. https://doi.org/10.1016/j.snb.2011.08.014
  21. M. Weber, J.-H. Kim, J.-H. Lee, J.-Y. Kim, I. Iatsunskyi, E. Coy, M. Drobek, A. Julbe, M. Bechelany, and S. S. Kim, "High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes", ACS Appl. Mater. Interfaces, Vol. 10, No. 40, pp. 34765-34773, 2018. https://doi.org/10.1021/acsami.8b12569
  22. Y. K. Jo, S.-Y. Jeong, Y. K. Moon, Y.-M. Jo, J.-W. Yoon, and J.-H. Lee, "Exclusive and Ultrasensitive Detection of Formaldehyde at Room Temperature using A Flexible and Monolithic Chemiresistive Sensor", Nat. Commun., Vol. 12, No. 1, pp. 4955(1)-4955(9), 2021. https://doi.org/10.1038/s41467-020-20314-w
  23. I. C. Weber, H. P. Braun, F. Krumeich, A. T. Guntner, and S. E. Pratsinis, "Superior Acetone Selectivity in Gas Mixtures by Catalyst-Filtered Chemoresistive Sensors", Adv. Sci., Vol. 7, No. 19, pp. 2001503(1)-2001503(9), 2020.
  24. J. Hubalek, K. Malysz, J. Prasek, X. Vilanova, P. Ivanov, E. Llobet, J. Brezmes, X. Correig, and Z. Sverak, "Pt-Loaded Al2O3S Catalytic Filters for Screen-Printed WO3S Sensors Highly Selective to Benzene", Sens. Actuator B Chem., Vol. 101, No. 3, pp. 277-283, 2004. https://doi.org/10.1016/j.snb.2004.01.015
  25. S. Jansat, K. Pelzer, J. Garcia-Anton, R. Raucoules, K. Philippot, A. Maisonnat, B. Chaudret, Y. Guari, A. Mehdi, C. Reye, and R.J.P. Corriu, "Synthesis of New RuO2S@SiO2S Composite Nanomaterials and their Application as Catalytic Filters for Selective Gas Detection", Adv. Funct. Mater., Vol. 17, No. 16, pp. 3339-3347, 2007. https://doi.org/10.1002/adfm.200700519
  26. T. Sahm, W. Rong, N. Barsan, L. Madle, and U. Weimar, "Sensing of CH4, CO and Ethanol with in Situ Nanoparticle Aerosol-Ffabricated Multilayer Sensors", Sens. Actuator B Chem., Vol. 127, No. 10, pp. 63-68, 2007. https://doi.org/10.1016/j.snb.2007.07.001
  27. A. Ryzhikov, M. Labeau, and A. Gaskov, "Al2O3S(M = Pt, Ru) Catalytic Membranes for Selective Semiconductor Gas Sensors", Sens. Actuator B Chem., Vol. 109, No. 1, pp. 91-96, 2005. https://doi.org/10.1016/j.snb.2005.03.004
  28. M. Fleischer, S. Kornely, T. Weh, J. Frank, and H. Meixner, "Selective Gas Detection with High-Temperature Operated Metal Oxides using Catalytic Filters", Sens. Actuator B Chem., Vol. 69, No. 1-2, pp. 205-210, 2000. https://doi.org/10.1016/S0925-4005(00)00513-X
  29. S.-Y. Jeong, Y. K. Moon, T.-H. Kim, S.-W. Park, K. B. Kim, Y. C. Kang, and J.-H. Lee, "A New Strategy for Detecting Plant Hormone Ethylene Using Oxide Semiconductor Chemiresistors: Exceptional Gas Selectivity and Response Tailored by Nanoscale Cr2O3S Catalytic Overlayer", Adv. Sci., Vol. 7, No. 7, pp. 1903093(1)-1903093(11), 2020.
  30. Y. K. Moon, S.-Y. Jeong, Y.C. Kang, and J.-H. Lee, "Metal Oxide Gas Sensors with Au Nanocluster Catalytic Overlayer: Toward Tuning Gas Selectivity and Response using A Novel Bilayer Sensor Design", ACS Appl. Mater. Interfaces, Vol. 11, No. 35, pp. 32169-32177, 2019. https://doi.org/10.1021/acsami.9b11079
  31. H.-M. Jeong, S.-Y. Jeong, J.-H. Kim, B.-Y. Kim, J.-S. Kim, F. Abdel-Hady, A. A. Wazzan, H. A. Al-Turaif, H.W. Jang, and J.-H. Lee, "Gas Selectivity Control in CO3SO4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides", ACS Appl. Mater. Interfaces, Vol. 9, No. 47, pp. 41397-41404, 2017. https://doi.org/10.1021/acsami.7b13998
  32. S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, and J.-H. Lee, "Ultra-Selective Detection of Sub-ppm-Level Benzene using Pd-SnO2S Yolk-Shell Micro-Reactors with A Catalytic CO3SO4 Overlayer for Monitoring Air Quality", J. Mater. Chem. A, Vol. 5, No. 4, pp. 1446-1454, 2017. https://doi.org/10.1039/C6TA09397C
  33. S.-Y. Jeong, Y. K. Moon, J. Wang, and J.-H. Lee, "Exclusive Detection of Volatile Aromatic Hydrocarbons using Bilayer Oxide Chemiresistors with Catalytic Overlayers", Nat. Commun., Vol. 14, No. 1, pp. 233(1)-233(13), 2023.
  34. Y. K. Moon, J. H. Kim, S.-Y. Jeong, S. M. Lee, S. J. Park, T. H. Kim, J.-H. Lee, and Y. C. Kang, "Exclusive Detection of Ethylene using Metal Oxide Chemiresistors with A Pd-V2O5-TiO2S Yolk-Shell Catalytic Overlayer via Heterogeneous Wacker Oxidation", J. Mater. Chem. A, Vol. 11, pp. 666-675, 2023. https://doi.org/10.1039/D2TA08425B
  35. Y. K. Moon, S.-Y. Jeong, Y.-M. Jo, Y. K. Jo, Y. C. Kang, and J.-H. Lee, "Highly Selective Detection of Benzene and Discrimination of Volatile Aromatic Compounds Using Oxide Chemiresistors with Tunable Rh-TiO2S Catalytic Overlayers", Adv. Sci., Vol. 8, No. 6, pp. 2004078(1)-2004078(10), 2021.
  36. S.-Y. Jeong, Y. K. Moon, J. K. Kim, S.-W. Park, Y. K. Jo, Y. C. Kang, and J.-H. Lee, "A General Solution to Mitigate Water Poisoning of Oxide Chemiresistors: Bilayer Sensors with Tb4O7 Overlayer", Adv. Funct. Mater., Vol. 31, No. 6, pp. 2007895(1)-2007895(10), 2021.
  37. M.-S. Yao, W.-X. Tang, G.-E Wang, B. Nath, and G. Xu, "MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance", Adv. Mater., Vol. 28, No. 26, pp. 5229-5234, 2016. https://doi.org/10.1002/adma.201506457
  38. H. G. Girma, K. H. Park, D. Ji, Y. Kim, H. M. Lee, S. Jeon, S.-H. Jung, J. Y. Kim, Y.-Y. Noh, and B. Lim, "Room-Temperature Hydrogen Sensor with High Sensitivity and Selectivity using Chemically Immobilized Monolayer Single-Walled Carbon Nanotubes", Adv. Funct. Mater., Vol. 33, No. 18, pp. 2213381(1)-2213381(9), 2023.
  39. S. Jang, S. Jung, and K. H. Baik, "Hydrogen Sensing Performance of ZnO Schottky Diodes in Humid Ambient Conditions with PMMA Membrane Layer", Sensors, Vol. 20, No. 3, pp. 835(1)-835(7), 2020. https://doi.org/10.1109/JSEN.2019.2959158