DOI QR코드

DOI QR Code

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim (School of Electronic and Electrical Engineering, Kyungpook National University)
  • Received : 2024.01.12
  • Accepted : 2024.01.18
  • Published : 2024.01.31

Abstract

Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.

Keywords

Acknowledgement

The EDA tools were supported by the IC Design Education Center (IDEC).

References

  1. Y. Chae and G. Han, "Low voltage, low power, inverterbased switched-capacitor Delta-Sigma modulator", IEEE J. Solid-State Circuits, Vol. 44, No. 2, pp. 458-472, 2009. https://doi.org/10.1109/JSSC.2008.2010973
  2. W. Bae, "CMOS inverter as analog circuit: An overview", J. Low Power Electron. Appl., Vol. 9, No. 3, pp. 26(1)-26(15), 2019. https://doi.org/10.3390/jlpea9010001
  3. J. Lin, M. Miyahara, and A. Matsuzawa, "A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique", Proc. of 2011 IEEE Int. Symp. Circuits. Syst. (ISCAS), pp. 21-24, Rio de Janeiro, Brazil, 2011.
  4. F. V. D. Goes, C. M. Ward, S. Astgimath, H. Yan, J. Riley, Z. Zeng, J. Mulder, S. Wang, and K. Bult, "A 1.5 mW 68 dB SNDR 80 MS/s 2x interleaved pipelined SAR ADC in 28 nm CMOS", IEEE J. Solid-Sstate Circuits, Vol. 49, No. 12, pp. 2835-2845, 2014. https://doi.org/10.1109/JSSC.2014.2361774
  5. M. Zhang, Q. Liu, and X. Fan, "Gain?boosted dynamic amplifier for pipelined?SAR ADCs", Electron. Lett., Vol. 53, No. 11, pp. 708-709, 2017. https://doi.org/10.1049/el.2017.0146
  6. C.-C. Liu and M.-C. Huang, "28.1 A 0.46 mW 5MHz-BW 79.7 dB-SNDR noise-shaping SAR ADC with dynamicamplifier-based FIR-IIR filter", Proc. of IEEE Int. SolidState Circuits Conf. (ISSCC), pp. 466-467, San Francisco, USA, 2017.
  7. X. Tang, B. Kasap, L. Shen, X. Yang, W. Shi, and N. Sun, "An energy-efficient comparator with dynamic floating inverter pre-amplifier", Proc. of 2019 Symposium on VLSI Circuits, pp. C140-C141, Kyoto, Japan, 2019.
  8. X. Tang, W. Shi, A. Mukherjee, D. Z. Pan, and N. Sun, "An energy-efficient comparator with dynamic floating inverter amplifier", IEEE J. Solid-State Circuits, Vol. 55, No. 4, pp. 1011-1022, 2020. https://doi.org/10.1109/JSSC.2019.2960485
  9. X. Tang, X. Yang, W. Zhao, C.-K. Hsu, J. Liu, L. Shen, A. Mukherjee, W. Shi, D. Z. Pan, and N. Sun, "A 13.5b-ENOB second-order noise-shaping SAR with PVT-robust closedloop dynamic amplifier", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 162-163, San Francisco, USA, 2020.
  10. X. Tang, X. Yang, J. Liu, W. Shi, D. Z. Pan, and N. Sun, "A 0.4-to-40MS/s 75.7 dB-SNDR fully dynamic event-driven pipelined ADC with 3-stage cascoded floating inverter amplifier", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 376-377, San Francisco, USA, 2021.
  11. A. Matsuoka, T. Nezuka, and T. Iizuka, "Fully dynamic discrete-time ΔΣ ADC using closed-loop two-stage cascoded floating inverter amplifiers", IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 69, No. 3, pp. 944-948, 2021. https://doi.org/10.1109/TCSII.2021.3134963
  12. H. Li, Z. Tan, Y. Bao, H. Xiao, H. Zhang, K. Du, L. Shen, J. Ru, Y. Zhang, L. Ye, and R. Huang, "Energy-efficient CMOS humidity sensors using adaptive range-shift zoom CDC and power-aware floating inverter amplifier array", IEEE J. Solid-State Circuits, Vol. 56, No. 12, pp. 3560-3572, 2021. https://doi.org/10.1109/JSSC.2021.3114189
  13. M. Zhao, Y. Zhao, H. Zhang, Y. Hu, Y. Bao, L. Ye, W. Qu, and Z. Tan, "A 4-μW bandwidth/power scalable Delta-Sigma modulator based on swing-enhanced floating inverter amplifiers", IEEE J. Solid-State Circuits, Vol. 57, No. 3, pp. 709-718, 2022. https://doi.org/10.1109/JSSC.2021.3123261
  14. R. S. A. Kumar, N. Krishnapura, and P. Banerjee, "Analysis and design of a discrete-time delta-sigma modulator using a cascoded floating-inverter-based dynamic amplifier", IEEE J. Solid-State Circuits, Vol. 57, No. 11, pp. 3384-3395, 2022. https://doi.org/10.1109/JSSC.2022.3171790
  15. M. Fukazawa and T. Matsui, "A 24-OSR to Simplify AntiAliasing Filter 2MHz-BW 83dB-DR 3rd-order DT-DSM using FIA-Based Integrator and Noise-Shaping SAR Combined Digital Noise-Coupling Quantizer", Proc. of 2023 IEEE Symposium on VLSI Technology and Circuits, pp. 1-2, Kyoto, Japan, 2023.