DOI QR코드

DOI QR Code

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon (School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Hyeongho Min (Department of SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU)) ;
  • Jihun Son (School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Tae Kon Ahn (School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Changhyun Pang (School of Chemical Engineering, Sungkyunkwan University (SKKU))
  • Received : 2024.01.02
  • Accepted : 2024.01.12
  • Published : 2024.01.31

Abstract

Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

Keywords

Acknowledgement

This study was supported by the SKKU Excellence in Research Award Research Fund of the Sungkyunkwan University (2023).

References

  1. X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent progress in electronic skin", Adv. Sci., Vol. 2, No. 10, pp. 1500169(1)-1500169(21), 2015.
  2. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires", Nat. Commun., Vol. 5, No. 1, pp. 3132(1)-3132(8), 2014.
  3. Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, "A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing", Nano lett., Vol. 19, No. 2, pp. 1143-1150, 2019.
  4. W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, "Wearable, human?interactive, health?monitoring, wireless devices fabricated by macroscale printing techniques", Adv. Funct. Mater., Vol. 24, No. 22, pp. 3299-3304, 2014. https://doi.org/10.1002/adfm.201303874
  5. X. Cui, F. Huang, X. Zhang, P. Song, H. Zheng, V. Chevali, H. Wang, and Z. Xu, "Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications", Iscience, Vol. 25, No. 4, pp. 104148(1)-104148(24), 2022.
  6. J. Hu, G. Dun, X. Geng, J. Chen, X. M. Wu, and T. L. Ren, "Recent progress in the flexible micro-pressure sensors for wearable health monitoring", Nanoscale Adv., Vol. 5, pp. 3131-3145, 2023. https://doi.org/10.1039/D2NA00866A
  7. M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang, Y. Wang, L. Yang, and D. Wei, "Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces", Chem. Eng. J., Vol. 412, p. 128649, 2021.
  8. J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, and H. Ko, "Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins", ACS Nano, Vol. 8, No. 5, pp. 4689-4697, 2014. https://doi.org/10.1021/nn500441k
  9. T. Zhao, T. Li, L. Chen, L. Yuan, X. Li, and J. Zhang, "Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials", ACS Appl. Mater. Interfaces, Vol. 11, No. 32, pp. 29466-29473, 2019. https://doi.org/10.1021/acsami.9b09265
  10. O. Atalay, A. Atalay, J. Gafford, and C. Walsh, "A highly sensitive capacitive?based soft pressure sensor based on a conductive fabric and a microporous dielectric layer", Adv. Mater. Technol., Vol. 3, No. 1, pp. 1700237(1)-1700237(22), 2018.
  11. K. H. Ha, H. Huh, Z. Li, and N. Lu, "Soft capacitive pressure sensors: trends, challenges, and perspectives", ACS Nano, Vol. 16, No. 3, pp. 3442-3448, 2022.
  12. Y. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, and Z. L. Wang, "A nanogenerator for energy harvesting from a rotating tire and its application as a self?powered pressure/speed sensor", Adv. Mater., Vol. 23, No. 35, pp. 4068-4071, 2011. https://doi.org/10.1002/adma.201102067
  13. J. Luo, L. Zhang, T. Wu, H. Song, and C. Tang, "Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method", Extreme Mech. Lett., Vol. 48, p. 101279, 2021. https://doi.org/10.1016/j.eml.2021.101279
  14. N. Gogurla, B. Roy, J. Y. Park, and S. Kim, "Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing", Nano Energy, Vol. 62, pp. 674-681, 2019. https://doi.org/10.1016/j.nanoen.2019.05.082
  15. T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu, Z. Zhang, G. Yuan, T. Chen, Y. Tian, X. Hou, and C. Lee, "Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications", Nat. Commun., Vol. 11, pp. 5381(1)-5381(12), 2020. https://doi.org/10.1038/s41467-019-13993-7
  16. L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, "An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film", Nat. Commun., Vol. 5, No. 1, pp. 3002(1)-3002(8), 2014.
  17. G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, and K. Cho, "Linearly and highly pressure?sensitive electronic skin based on a bioinspired hierarchical structural array", Adv. Mater., Vol. 28, No. 26, pp. 5300-5306, 2016. https://doi.org/10.1002/adma.201600408
  18. A. Gerami, Y. Alzahid, P. Mostaghimi, N. Kashaninejad, F. Kazemifar, T. Amirian, N. Mosavat, M. E. Warkiani, and R. T. Armstrong, "Microfluidics for porous systems: fabrication, microscopy and applications", Transp. Porous Media, Vol. 130, pp. 277-304, 2019. https://doi.org/10.1007/s11242-018-1202-3
  19. S. Chun, W. Son, H. Kim, S. K. Lim, C. Pang, and C. Choi, "Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skin", Nano lett., Vol. 19, No. 5, pp. 3305-3312, 2019.