DOI QR코드

DOI QR Code

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts

CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성

  • Dong Min Kim (Department of Chemical Engineering, Chungbuk National University) ;
  • Jong Dae Lee (Department of Chemical Engineering, Chungbuk National University)
  • 김동민 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2023.11.27
  • Accepted : 2024.01.06
  • Published : 2024.02.01

Abstract

In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.

본 연구에서는 고용량 리튬이온배터리용 음극 소재로 탄소 코팅된 할로우 구조의 실리콘(HSi/C) 복합소재를 제조하였다. CTAB (N-Cetyltrimethylammonium bromide)이 첨가된 Stöber법을 통해 할로우 실리카(HSiO2)를 합성하였으며, HSiO2를 마그네슘열 환원한뒤 표면에탄소를 코팅하여 HSi/C 음극복합소재를 제조하였다. 복합소재의물리적 특성과 전기화학적 특성을 CTAB 조성에 따라 조사하였다. FE-SEM 분석 결과 CTAB 조성이 감소할수록 HSiO2 입자의 크기가 커졌으나 두께는 감소하였다. 제조된 HSi/C 소재는 다양한 CTAB 비율(0.5, 1.0, 1.5)에서 각각 2188.6, 2164.5, 1866.7 mAh/g의 높은 초기 방전용량을 나타내었으며, 100 사이클의 충·방전 후 0.5-HSi/C가 1171.3 mAh/g의 높은 가역 용량과 70.9%의 용량 유지율을 보여주었다. 전기화학 임피던스 분광법(Electrochemical Impedance Spectroscopy, EIS)으로 저항 특성을 분석하였으며, 0.5-HSi/C 소재가 20 사이클 이후 다른 CTAB 조성의 HSi/C 복합소재에 비해 안정적인 저항 특성을 보이는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 기술개발사업[RS-2022-00140827]과 첨단분야혁신융합대학(2023)의 지원에 의한 연구임.

References

  1. Wang, D., Gao, M., Pan, H., Wang, J. and Liu, Y., "High Performance Amorphous-Si@SiOx/C Composite Anode Materials Forr Li-ion Batteries Derived from Ball-milling and in situ Carbonization," J. Power Sources, 256, 190-199(2014). https://doi.org/10.1016/j.jpowsour.2013.12.128
  2. Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda Y. and Yamamoto, O., "A High Performance Silicon/carbon Composite Anode with Carbon Nanofiber for Lithium-ion Batteries," J. Power Sources, 195, 1720-1725(2010). https://doi.org/10.1016/j.jpowsour.2009.09.073
  3. Xu, Z., Liu, X., Luo, Y., Zhou, L. and Kim, J., "Nanosilicon Anodes for High Performance Rechargeable Batteries," Prog. Mater. Sci., 90, 1-44(2017). https://doi.org/10.1016/j.pmatsci.2017.07.003
  4. Shi, L., Wang, W., Wang, A., Yuan, K. and Yang, Y., "Understanding the Impact Mechanism of the Thermal Effect on the Porous Silicon Anode Material Preparation via Magnesiothermic Reduction," J. Alloys Compd., 661, 27-37(2016). https://doi.org/10.1016/j.jallcom.2015.11.196
  5. Wang, P., Zhang, X., Fan, X., Zhong, J. and Huang, K., "Synthesis of Si Nanosheets by Using Sodium Chloride as Template for High-performance Lithium-ion Battery Anode Material," J. Power Sources, 379, 20-25(2018). https://doi.org/10.1016/j.jpowsour.2018.01.030
  6. Yan, Y., McDowell, M., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W. and Cui, Y., "Interconnected Silicon Hollow Nanospheres for Lithium-ion Battery Anodes with Long Cycle Life," Nano Lett., 11, 2949-2954(2011). https://doi.org/10.1021/nl201470j
  7. Zhu, L., Chen, Y., Wu, C., Chu, R., Zhang, J., Jiang, H., Zeng, Y., Zhang, Y. and Guo, H., "Double-carbon Protected Silicon Anode for High Performance Lithium-ion Batteries," J. Alloys Compd., 812, 151848(2020).
  8. Choi, N. and Lee, J., "Electrochemical Performances of Spherical Silicon/carbon Anode Materials Prepared by Hydrothermal Synthesis," Korean Chem. Eng. Res., 59(3) 326-332(2021).
  9. Jeong, M., Islam, M., Du, H., Lee, Y., Sun, H., Choi, W., Lee, J., Chung, J. and Jung, H., "Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Materials for Lithium-ion Batteries," Electrochim. Acta, 209, 299-307(2016). https://doi.org/10.1016/j.electacta.2016.05.080
  10. An, W., Xiang, B., Fu, J., Mei, S., Guo, S., Huo, K., Zhang, X., Gao, B. and Chu, P., "Three-dimensional Carbon-coating Silicon Nanopaticles Welded on Carbon Nanotubes Composites for High-stability Lithium-ion Battery Anodes," Appl. Surf. Sci., 479, 896-902(2019). https://doi.org/10.1016/j.apsusc.2019.02.145
  11. Maheed, M., Saleem, A., Ma, X. and Ma, W., "Clay-derived Mesoporous Si/rGO for Anode Material of Lithium-ion Batteries," J. Alloys Compd., 848, 156590(2020).
  12. Liang, G., Qin, X., Zou, J., Luo, L., Wang, Y., Wu, M., Zhu, H., Chen, H., Kang, F. and Li, B., "Electrosparayed Silicon-embedded Porous Carbon Microspheres as Lithium-ion Battery Anodes with Exceptional Rate Capacities," Carbon, 127, 424-431(2018). https://doi.org/10.1016/j.carbon.2017.11.013
  13. Zhang, H., Wu, J., Zhou, L., Zhang, D. and Qi, L., "Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shells of Mesoporous Silica in Mixed Water-ethanol Solvents," Langmuir, 23, 1107-1113(2007). https://doi.org/10.1021/la062542l
  14. Hamedani, A., Ow-Yang, C. and Soytas, S., "Mechanisms of Si Nanoparticle Formation by Molten Salt Magnetiothermic Reduction of Silica for Lithium-ion Battery Anodes," ChemElectroChem, 8, 3181-3191(2021). https://doi.org/10.1002/celc.202100683
  15. Darghouth, A., Aouida, S. and Bessais, B., "High Purity Porous Silicon Powder Synthesis by Magnesiothermic Reduction of Tunisian Silica Sand," Silicon, 13, 667-676(2021). https://doi.org/10.1007/s12633-020-00433-1
  16. Wang, T., Ma, W., Shangguan, J., Jiang, W. and Zhong, Q., "Controllable Synthesis of Hollow Mesoporous Silica Spheres and Application as Support of Nano-gold," J. Solid State Chem., 215, 67-73(2014). https://doi.org/10.1016/j.jssc.2014.03.003
  17. Fang, S., Tong, Z., Nie, P., Liu, G. and Zhang, X., "Raspberrylike Nanostructured Silicon Composite Anode for High Performance Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 9, 18766-18773(2017). https://doi.org/10.1021/acsami.7b03157
  18. Chen, S., Chen, Z., Luo, Y., Xia, M. and Cao, C., "Silicon Hollow Sphere Anode with Enhanced Cycling Stability by a Template-free Method," Nanotechnology, 28(16), 165404(2017).
  19. Wen, Z., Wu, F., Li, L., Chen, N., Luo, G., Du, J., Zhao, L., Ma, Y., Li, Y. and Chen, R., "Electrolyte Design Enabling Stable Solid Electrolyte Interface for High-performance Silicon/carbon Anodes," ACS Appl. Mater. Interfaces, 14, 38807-38814(2022). https://doi.org/10.1021/acsami.2c09997
  20. Xiao, T., Zhang, W., Xu, T., Wu, J. and Wei, M., "Hollow SiO2 Microspheres Coated with Nitrogen Doped Carbon Layer as An Anode for High Performance Lithium-ion Batteries," Electrochim. Acta, 306, 106-112(2019). https://doi.org/10.1016/j.electacta.2019.03.109
  21. Sohn, M., Kim, D., Park, H., Kim, J. and Kim, H., "Porous Siliconcarbon Composite Materials Engineered by Simultaneous Alkaine Etching for High-capacity Lithium Storage Anodes," Electrochim. Acta, 196, 197-205(2016). https://doi.org/10.1016/j.electacta.2016.02.101
  22. Zhang, Y., Mu, Z., Lai, J., Chao, Y., Yang, Y., Zhou, P., Li, Y., Yang, W., Xia, Z. and Guo, S., "MXene/Si@SiOx@C Layer-by-layer Superstructure with Auto Adjustable Function for Superior Stable Lithium Storage," ACS Nano, 13, 2167-2175(2019).