DOI QR코드

DOI QR Code

Resistance of Polystyrene-Impregnated Glued Laminated Lumbers after Exposure to Subterranean Termites in a Field

  • Dede HERMAWAN (IPB University (Bogor Agricultural University), Kampus IPB Darmaga) ;
  • Mahdi MUBAROK (IPB University (Bogor Agricultural University), Kampus IPB Darmaga) ;
  • Imam Busyra ABDILLAH (IPB University (Bogor Agricultural University), Kampus IPB Darmaga) ;
  • Yusuf Sudo HADI (IPB University (Bogor Agricultural University), Kampus IPB Darmaga) ;
  • Cossey YOSI (The Papua New Guinea University of Technology) ;
  • Aujchariya CHOTIKHUN (Faculty of Science and Industrial Technology, Prince of Songkla University) ;
  • Rohmah PARI (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Gustan PARI (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN))
  • Received : 2023.10.25
  • Accepted : 2023.12.15
  • Published : 2024.01.25

Abstract

Termites are a serious threat to wood-based products in Indonesia. This study investigated the termite resistant property of glulam made from polystyrene-modified wood. Three tropical fast-growing wood species, namely mangium (Acacia mangium), manii (Maesopsis eminii), and rubberwood (Hevea brasiliensis), were prepared for flat-sawn laminae. After getting air-dried condition, the laminae were impregnated with polystyrene using potassium peroxydisulphate as a catalyst followed by polymerization at 80℃. Polystyrene-impregnated and control glued-laminated lumbers (glulams) were manufactured, and solid wood was provided. Three wood species and three wood products with six replicates were exposed in a field in Bogor, Indonesia, for four months, and before the tests, their density and moisture content were measured. At the end of the field tests, the weight loss and protection levels of each test sample were determined. A completely randomized factorial design was used for data analysis. The weight percentage gains for mangium, manii, and rubberwood were 22.30%, 18.22%, and 10.44%, respectively. The results showed that manii belonged to low-density wood, whereas the other two woods were medium-density wood, and the moisture content was the ambient moisture content, typical of the Bogor area. Regarding weight loss and protection level, mangium was the most durable against subterranean termite attacks, followed by rubberwood and manii. Among the wood products, the polystyrene-impregnated glulam presented the highest durability, followed by the control glulam and solid wood. Therefore, mangium and rubberwood polystyrene-impregnated glulams are recommended for future product development.

Keywords

Acknowledgement

The authors would like to express their appreciation to the Indonesian Ministry of Education, Culture, Research and Technology, National Research and Innovation Agency, and the Department of Research Strengthening and Development, which sponsored the research grant via the National Competitive Basic Research Scheme, No. 001/E5/PG.02.00. PL/2023. The authors also thank the IPB University (Bogor Agricultural University) for facilitating this research funding through research contract no. 15895/IT3. D10/PT01.02/P/T/2023, and the Research Center for Biomass and Bioproducts (National Research and Innovation Agency (BRIN), all in Bogor, Indonesia) for the use of their research facilities.

References

  1. Acosta, A.P., Labidi, J., Barbosa, K.T., Cruz, N., de Avila Delucis, R., Gatto, D.A. 2020. Termite resistance of a fast-growing pine wood treated by in situ polymerization of three different precursors. Forests 11(8): 865.
  2. American Society for Testing Materials [ASTM]. 2006. Standard Test Method of Evaluating Wood Preservatives by Field Tests with Stakes. ASTM D 1758-06. ASTM International, West Conshohocken, PA, USA.
  3. Arango, R.A., Green, F., Hintz, K., Lebow, P.K., Miller, R.B. 2006. Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration & Biodegradation 57(3): 146-150. https://doi.org/10.1016/j.ibiod.2006.01.007
  4. Arinana, Fannani, A.R., Nandika, D., Haneda, N.F. 2020. Field test on the palatability of the subterranean termites to pine wood with various treatments. Biodiversitas Journal of Biological Diversity 21(12): 5763-5771. https://doi.org/10.13057/biodiv/d211237
  5. Arinana, Tsunoda, K., Herliyana, E.N., Hadi, Y.S. 2012. Termite-susceptible species of wood for inclusion as a reference in Indonesian standardized laboratory testing. Insects 3(2): 396-401. https://doi.org/10.3390/insects3020396
  6. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. https://doi.org/10.5658/WOOD.2022.50.6.458
  7. Ashaari, Z. 2017. Low Density Wood from Poor to Excellent. Universiti Putra Malaysia Press, Serdang, Malaysia.
  8. Badalamenti, E., Sferlazza, S., La Mela Veca, D.S., Maetzke, F., Sala, G., La Mantia, T. 2020. The evolution in time of the concept of fast growing tree species: Is it possible to use a definition applicable to all environmental conditions? Annals of Silvicultural Research 45(1): 53-61.
  9. BPS-Statistics Indonesia. 2022. Statistics of Forestry Production. BPS-Statistics Indonesia, Jakarta, Indonesia.
  10. Budiman, I., Purnawati, R., Siruru, H., Hadi, Y.S. 2019. Physical and mechanical properties of five Indonesian wood treated with polystyrene. IOP Conference Series: Earth and Environmental Science 572: 012039.
  11. Bureau of Meteorology. 2022. Climatology and Geophysics. BMKG, Jakarta, Indonesia.
  12. Chao, W.Y., Lee, A.W.C. 2003. Properties of southern pine wood impregnated with styrene. Holzforschung 57(3): 333-336. https://doi.org/10.1515/HF.2003.049
  13. Gerardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood: A review. Annals of Forest Science 73(3): 559-570. https://doi.org/10.1007/s13595-015-0531-4
  14. Ghani, R.S.M., Lee, M.D. 2021. Challenges of wood modification process for plantation eucalyptus: A review of Australian setting. Journal of the Korean Wood Science and Technology 49(2): 191-209.
  15. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022b. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  16. Hadi, Y.S., Hermawan, D., Abdillah, I.B., Mubarok, M., Arsyad, W.O.M., Pari, R. 2022a. Polystyrene-impregnated glulam resistance to subterranean termite attacks in a laboratory test. Polymers 14(19): 4003.
  17. Hadi, Y.S., Hermawan, D., Sulastiningsih, I.M., Basri, E., Pari, G., Pari, R., Abdillah, I.B. 2021. Color change and physical-mechanical properties of polystyrene-impregnated glulam from three tropical fast-growing wood species. Forests 12(10): 1420.
  18. Hadi, Y.S., Massijaya, M.Y., Arinana, A. 2016. Subterranean termite resistance of polystyrene-treated wood from three tropical wood species. Insects 7(3): 37.
  19. Hadi, Y.S., Massijaya, M.Y., Hermawan, D., Arinana, A. 2015. Feeding rate of termites in wood treated with borax, acetylation, polystyrene, and smoke. Journal of the Indian Academy of Wood Science 12(1): 74-80. https://doi.org/10.1007/s13196-015-0146-2
  20. Hadi, Y.S., Nawawi, D.S., Herliyana, E.N., Lawniczak, M. 1998. Termite attack resistance of four polystyrene-impregnated woods from Poland. Forest Products Journal 48(9): 60-62.
  21. Hadjib, N. 2005. Physical and mechanical properties of three polystyrene impregnated Indonesian wood species. Indonesian Journal of Forestry Research 2(2): 75-88. https://doi.org/10.20886/ijfr.2005.2.2.75-88
  22. Hartono, R., Sucahyo, Hadi, Y.S., Jasni. 2009. Physical and mechanical properties of randu and angsana impregnated with polystyrene. In: Bogor, Indonesia, Proceedings of the 1st International Symposium of Indonesian Wood Research Society, pp. 79-82.
  23. Hendrik, J., Hadi, Y.S., Massijaya, M.Y., Santoso, A., Pizzi, A. 2019. Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives. Journal of the Korean Wood Science and Technology 47(3): 253-264. https://doi.org/10.5658/WOOD.2019.47.3.253
  24. Ibach, R.E., Rowell, R.M. 2013. Lumen Modifications. In: Handbook of Wood Chemistry and Wood Composites. 2nd ed, Ed. by Rowell, R. CRC Press, Boca Raton, FL, USA.
  25. Indonesian National Standard [SNI]. 2014. Wood and Wood Products Resistance Test to Wood-destroying Organism. Indonesian National Standard 7207-2014. Indonesian National Standard Bureau, Jakarta, Indonesia.
  26. Japan Agricultural Standard [JAS]. 2003. Glued Laminated Timber. JAS 234-2003. Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan.
  27. Jasni, J. 2016. Natural durability of 57 Indonesian wood species tested under the shade. Journal of Forest Products Research 34(3): 179-188.
  28. Jones, D., Sandberg, D. 2020. A review of wood modification globally: Updated findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment 1: 1-31. https://doi.org/10.37947/ipbe.2020.vol1.1
  29. Kadir, K. 1973. Air Dry Moisture Content in Bogor. Forest Products Research Institute, Bogor, Indonesia.
  30. Kutana, A.G. 2021. Preferensi makan rayap tanah Schedorhinotermes javanicus Kemner (Isoptera: Rhinotermitidae) terhadap kayu tusam (Pinus merkusii Jungh. et de Vriese). M.S. Thesis, IPB University, Indonesia.
  31. Laksono, G.D., Rahayu, I.S., Karlinasari, L., Darmawan, W., Prihatini, E. 2023. Characteristics of magnetic sengon wood impregnated with nano Fe3O4 and furfuryl alcohol. Journal of the Korean Wood Science and Technology 51(1): 1-13. https://doi.org/10.5658/WOOD.2023.51.1.1
  32. Lee, C., Jung, H., Chung, Y. 2021. Functional characteristics of nakdong technique treated on paulownia wood surface. Journal of the Korean Wood Science and Technology 49(1): 82-92. https://doi.org/10.5658/WOOD.2021.49.1.82
  33. Lee, J.J., Kim, C.K. 2022. Tomosynthesis feasibility study for visualization of interiors of wood columns surrounded with walls. Journal of the Korean Wood Science and Technology 50(4): 246-255. https://doi.org/10.5658/WOOD.2022.50.4.246
  34. Likert, R.A. 1932. A Technique for Measurement of Attitudes. Archives of Psychology, New York, NY, USA.
  35. Mantanis, G.I. 2017. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources 12(2): 4478-4489. https://doi.org/10.15376/biores.12.2.Mantanis
  36. Mihara, R., Barry, K.M., Mohammed, C.L., Mitsunaga, T. 2005. Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts. Journal of Chemical Ecology 31(4): 789-804. https://doi.org/10.1007/s10886-005-3544-x
  37. Militz, H. 2015. Wood modification in Europe in the year 2015: A success story? In: Helsinki, Finland, Proceedings of the 8th European Conference of Wood Modification.
  38. Ministry of Environment and Forestry [KLHK]. 2019. Menyongsong kebangkitan industri perkayuan nasional untuk kesejahteraan masyarakat. https://ppid.menlhk.go.id/berita/siaran-pers/4733/menyongsong-kebangkitan-industri-perkayuan-nasional-untuk-kesejahteraan-masyarakat
  39. Muslich, M., Wardani, M., Kalima, T., Rulliaty, S., Damayanti, R., Hadjib, N., Pari, G., Suprapti, S., Iskandar, M.I., Abdurachman, Basri, E., Heriansyah, I., Tata, H.L. 2013. Indonesian Wood Atlas IV. Forest Research and Development Center, Indonesian Ministry of Forestry, Bogor, Indonesia. pp. 84-85.
  40. Oey, D.S. 1990. Specific Gravity of Indonesian Wood and its Weight for Practice Purposes. Announcement Nr. 3. Research and Development Center of Forest Products, Bogor, Indonesia.
  41. Priadi, T., Putra, G.S., Cahyono, T.D. 2023. Reliability of the impregnated boron compounds, citric acid- and heat-treated samama (Anthocephalus macrophyllus) wood against the fungal and termite attacks. Journal of the Korean Wood Science and Technology 51(1): 49-57. https://doi.org/10.5658/WOOD.2023.51.1.49
  42. Santoso, R., Yolanda, R., Purnama, A.A. 2016. Jenis-jenis rayap (Insekta: Isoptera) yang terdapat di Kecamatan Bangun Purba Kabupaten Rokan Hulu Provinsi Riau. Jurnal Mahasiswa Prodi Biologi UPP 2(1): 1-11.
  43. Song, D., Kim, K. 2022. Influence of manufacturing environment on delamination of mixed cross laminated timber using polyurethane adhesive. Journal of the Korean Wood Science and Technology 50(3): 167-178. https://doi.org/10.5658/WOOD.2022.50.3.167
  44. Stolf, D.O., Lahr, F.A.R. 2004. Wood-polymer composite: Physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate. Materials Research 7(4): 611-617. https://doi.org/10.1590/S1516-14392004000400015
  45. Sumardi, I., Alamsyah, E.M., Suhaya, Y., Dungani, R., Sulastiningsih, I.M., Pramestie, S.R. 2022. Development of bamboo zephyr composite and the physical and mechanical properties. Journal of the Korean Wood Science and Technology 50(2): 134-147. https://doi.org/10.5658/WOOD.2022.50.2.134
  46. Syamani, F.A., Fatriasari, W., Budiman, I., Hadi, Y.S. 2012. Physical-mechanical and electricity properties of polystyrene impregnated durian (Durio zibethinus Murr.) and kecapi (Sandoricum koetjape Merr.) woods. In: Makassar, Indonesia, Proceedings of the 15th National Seminar Indonesian Wood Research Society.
  47. Teoh, Y.P., Don, M.M., Ujang, S. 2011. Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): A case study in Malaysia. Journal of Wood Science 57(4): 255-266. https://doi.org/10.1007/s10086-011-1173-2