DOI QR코드

DOI QR Code

Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering

  • 김선아 (경북대학교 에너지신소재화학공학과) ;
  • 박상식 (경북대학교 미래과학기술융합학과)
  • Seon-A Kim (Department of Energy Materials & Chemical Engineering, Kyungpook National University) ;
  • Sang-Shik Park (Department of Energy Materials & Chemical Engineering, Kyungpook National University)
  • 투고 : 2023.11.23
  • 심사 : 2023.12.05
  • 발행 : 2024.01.27

초록

New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2021R1A5A8033165).

참고문헌

  1. T. Li and P. S. Lee, Small Struct., 3, 2100128 (2022).
  2. M. Safaei, H. A. Sodano and S. R. Anton, Smart Mater. Struct., 28, 113001 (2019).
  3. C. Covaci and A. Gontean, Sensors, 20, 3512 (2020).
  4. J. Ghazanfarian, M. M. Mohammadi and K. Uchino, Actuators, 10, 312 (2021).
  5. L. Lu, W. Ding, J. Liu and B. Yang, Nano Energy, 78, 105251 (2020).
  6. M.-S. Kim, W. Commerell, J.-W. Roh and S.-S. Park, Mater. Sci. Eng., B, 298, 116898 (2023).
  7. A. Ibrahim, A. Ramini and S. Towfighian, Energy Rep., 6, 2490 (2020).
  8. J. Tian, X. Chen and Z. L. Wang, Nanotechnology, 31, 242001 (2020).
  9. S. K. Karan, S. Maiti, J. H. Lee, Y. K. Mishra, B. B. Khatua and J. K. Kim, Adv. Funct. Mater., 30, 2004446 (2020).
  10. A. M. Nazar, K.-J. I. Egbe, A. Abdollahi and M. A. H.-Ardebili, Energies, 14, 5600 (2021).
  11. J. Han, Y. Wang, Y. Ma and C. Wang, ACS Appl. Mater. Interfaces, 15, 31795 (2023).
  12. T. A. Babu and W. Madhuri, RSC Adv., 12, 34454 (2022).
  13. H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang and X. Cheng, J. Mater. Chem. A, 8, 19631 (2020).
  14. J. Zhu, J. Qian, X. Hou, J. He, X. Niu, W. Geng, J. Mu, W. Zhang and X. Chou, Smart Mater. Struct., 28, 095014 (2019). https://doi.org/10.1088/1361-665X/ab3232
  15. S. H. Wankhade, S. Tiwari, A. Gaur and P. Maiti, Energy Rep., 6, 358 (2020).
  16. C. Luo, S. Hu, M. Xia, P. Li, J. Hu, G. Li, H. Jiang and W. Zhang, Energy Technol., 6, 922 (2018).
  17. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza and G. A. Rossetti, Jr., J. Rodel, Appl. Phys. Rev., 4, 041305 (2017).
  18. Z. L. Wang and J. Song, Science, 312, 242 (2006).
  19. G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair and Z. Bakenov, Sensors, 20, 5214 (2020).
  20. J. I. Roscow, J. Taylor and C. R. Bowen, Ferroelectrics, 498, 40 (2016).
  21. G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao, Y. Zhang, C. K. Jeong, S. Jiang, S. Zhang and Q. Wang, Energy Environ. Sci., 11, 2046 (2018).
  22. J. I. Roscow, Y. Zhang, M. J. Krasny, R. W. C. Lewis, J. Taylor and C. R. Bowen, J. Phys. D: Appl. Phys., 51, 225301 (2018).
  23. J. I. Roscow, V. Yu. Topolov, C. R. Bowen, J. Taylor and A. E. Panich, Sci. Technol. Adv. Mater., 17, 769 (2016).
  24. C. Yang, F. Chen, J. Sun and N. Chen, ACS Omega, 6, 30769 (2021).
  25. J. Li, P. Li, J. Li, Z. Tian and F. Yu, Catalysts, 9, 506 (2019).
  26. N. Funsueb, A. Limpichaipanit and A. Ngamjarurojana, J. Phys.: Conf. Ser., 1144, 012133 (2018).
  27. H. S. Mallik, I. Fujii, Y. Matsui, G. P. Khanal, S. Kim, S. Ueno, T. S. Suzuki and S. Wada, J. Ceram. Soc. Jpn., 129, 91 (2021).
  28. F. Davar, Z. Fereshteh and M. Salavati-Niasari, J. Alloys Compd., 476, 797 (2009).
  29. G. Liu, X. Chen, X. Li, C. Wang, H. Tian, X. Chen, B. Nie and J. Shao, IEEE Trans. Ind. Electron., 69, 6381 (2022).
  30. W. Seung, H.-J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J.-H. Lee, J. H. Lee, S. Kim, Y. K. Park, Y. J. Park and S.-W. Kim, Adv. Energy Mater., 7, 1600988 (2017).
  31. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang and K. J. Lee, Nano Lett., 10, 4939 (2010).
  32. S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando and Z. L. Wang, Nano Energy, 8, 150 (2014).
  33. X. Zhang, L. Chen, Y. Jiang, W. Lim and S. Soh, Chem. Mater., 31, 1473 (2019).
  34. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu and Z. L. Wang, Nat. Commun., 10, 1427 (2019).