DOI QR코드

DOI QR Code

Analysis of Ingredients Using 5 Species of Native Plants from Mt. Jiri. for the Development of Cosmetic Raw Materials, DPPH and ABTS Activity-II

지리산 자생식물 5종의 성분 분석 및 DPPH, ABTS 활성 실험을 통한 화장품 원료개발-II

  • Youn Ok Jung (Sooy-K Bio Lab, Research and Development) ;
  • No Bok Park (Department of Floriculture, Korea National University of Agriculture and Fisheries)
  • 정연옥 (수이케이 바이오랩 연구소) ;
  • 박노복 (국립한국농수산대학 원예학부)
  • Received : 2023.10.31
  • Accepted : 2023.11.22
  • Published : 2024.01.20

Abstract

Five species of plants (Pimpinella brachycarpa (Kom.) Nakai, Hylotelephium erythrostictum (Miq.) H. Ohba, Magnolia sieboldii K. Koch, Sanguisorba hakusanensis Makino, Agastache rugosa (Fisch. & Mey.) Kuntze) native to the clean area of Mt. Jiri were selected. The collection period was from May to September 2021, and the five species plants were collected in their native habitats with flowers in full bloom. The collected plants were extracted with 70% EtOH and 17 kinds of polyphenol components were analyzed. Next, flowers, leaves and roots were separated from plants, extracted with 70% EtOH for each part and experiments were conducted on DPPH, ABTS, total polyphenols, and total flavonoids. The results are as follows. 1. There were a total of 13 polyphenol components contained in the 5 species of plants native to Mt. Jiri. Among them, the total content of the most detected substance was Sanguisorba hakusanensis Makino, which was 126.2 ppm, and the main substance was ellagic acid (=ELA), which was 122.4 ppm. 2. As a result of examining the DPPH radical scavenging activity, the flowers, stems, and roots of Sanguisorba hakusanensis Makino showed the best scavenging activity, while the flower extracts of other plants showed good scavenging activity. 3. The highest ABTS radical scavenging activity was Sanguisorba hakusanensis Makino flower extract at 13.5 ㎍/㎖, followed by roots at 16.8 ㎍/㎖ and leaves at 22.6 ㎍/㎖;. Although such a large ABTS radical scavenging activity could not be confirmed in other plants, the flower extract was overall better than the leaf and root extracts of other parts. 4. The highest total polyphenol content was found in the leaves of Magnolia sieboldii K. Koch, at 161.4mg GAE/g, followed by the highest content in the roots of Magnolia sieboldii K. Koch and the roots of Agastache rugosa (Fisch. & Mey.) Kuntze, at 130.0mg GAE/g. Also, the lowest was found to be Sanguisorba hakusanensis Makino. 5. The total flavonoid content was 186.2mg CAE/g in the roots of Agastache rugosa (Fisch. & Mey.) Kuntze, 166.9mg CAE/g in the flowers, and the lowest was 116.1mg CAE/g in the leaves. As shown in the results above, Sanguisorba hakusanensis Makino has excellent antioxidant efficacy and has a high polyphenol content, so it is expected to be fully utilized in the cosmetics industry in the future.

지리산에서 자생하는 5종(참나물, 꿩의비름, 함박꽃나무, 산오이풀, 배초향)의 식물을 선정하여 5월부터 9월까지 자생지에서 꽃이 활짝 개화한 상태에서 채집하였다. 채집한 식물은 전초는 추출하여 17종의 폴리페놀 성분을 분석하고 다음으로 꽃, 잎, 줄기, 뿌리를 분리하여 각 부위의 추출물로 DPPH, ABTS, 폴리페놀, 플라보노이드에 관한 실험을 진행하였던바 결과는 다음과 같다. 1. 지리산에 자생하는 5종의 식물에 함유된 폴리페놀 성분은 총 13가지였으며 그중 가장 많은 검출된 물질의 총 함량은 산오이풀로 126.2ppm이었으며 주 물질은 ellagic acid(=ELA) 122.4ppm이었다. 2. DPPH radical 소거활성을 살펴본 결과 산오이풀의 꽃, 줄기, 뿌리에서 가장 좋았으며 다른 식물에서는 꽃 추출물에서 좋은 소거활성도를 나타냈다. 3. ABTS radical 소거활성도가 가장 높은 것은 산오이풀 꽃 추출물에서 가장 높은 13.5㎍/㎖에서였고, 뿌리 16.8㎍/㎖, 잎 22.6㎍/㎖ 순이었다. 그 외 다른 식물에서는 그렇게 큰 ABTS radical 소거활성능을 확인할 수 없었지만 전체적으로 꽃 추출물이 다른 부위인 잎과 뿌리 추출물보다 좋았다. 4. 총 폴리페놀 함량은 가장 많은 것은 함박꽃나무는 잎에서는 161.4mg GAE/g으로 가장 많았고, 다음으로 함박꽃나무의 뿌리와 배초향 뿌리에서 가장 많은 130.0mg GAE/g이었다. 또한 가장 낮은 것은 산오이풀로 나타났다. 5. 총 플라보노이드 함량은 배초향의 뿌리로 186.2mg CAE/g, 꽃에서 166.9mg CAE/g, 잎에서 가장 낮은 116.1mg CAE/g이었다. 이상의 결과에서 나타나듯 산오이풀은 항산화 효능도 우수하며 폴리페놀 성분의 함량도 많아 앞으로 화장품 산업에 충분히 이용 가능할 것이라 생각된다.

Keywords

References

  1. 국가생물종지식정보시스템, http://www.nature.go.kr 
  2. 정연옥, 오장근, 신영준, 2012, 야생화 백과 사전-여름, 가을편, 가람누리 
  3. Baek N, Kim YH, Lee YH, Park JD, Kang KS, and Kim SI. 1992. A new dehydroeugenol from Magnolia officinalis. Planta Med. vol. 58 ; p. 556-558.  https://doi.org/10.1055/s-2006-961549
  4. Chang KM. 2007. A study cookery utilization of Pimpinella brachycarpa N for developing as functional foods. Kor J Food Culture, vol. 22 ; p. 274-282. 
  5. Chen JH, and Ho CT. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem, vol. 45 ; p. 2374-2378.  https://doi.org/10.1021/jf970055t
  6. Cho SH, Choi YJ, Rho CW, Choi CY, Kim DS, and Cho SH. 2008. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Korean J Food Preserv., vol. 1 ; p. 105-110. 
  7. Choi MH, and Kim GH. 2002. A study on quality characteristics of Pimpinella brachycarpa kimchi during storage at different temperatures. J Kor Soc Food Sci Nutr vol. 31 ; p. 45-49.  https://doi.org/10.3746/jkfn.2002.31.1.045
  8. Choi NS, Oh SS, and Lee JM. 2001. Change of biologically functional compounds of Pimpinella brachycarpa (Chamnamul) by blanching conditions. Kor J Dietary Culture, vol. 16 ; p. 388-397. 
  9. Cuvelier ME, Richard H, Berset C. 1996. Antioxidative activity and phenolic composition of pilot plant and commercial extracts of sage and rosemary. J American Oil Chem Society, vol. 73 ; p. 645-652.  https://doi.org/10.1007/BF02518121
  10. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964.  https://doi.org/10.1021/jf0255937
  11. Gao X, Wu J, Zou W, & Dai Y. 2014, Two ellagic acids isolated from roots of Sanguisorba officinalis L. promote hematopoietic progenitor cell proliferation and megakaryocyte differentiation. Molecules (Basel, Switzerland), vol 19(4) ; p. 5448-5458.  https://doi.org/10.3390/molecules19045448
  12. Han DS, Kim YC, Kim SE, Ju HS, and Byun SJ. 1987. Studies on the diterpene constituent of the root of Agastache rugosa O. Kuntze. Kor J Pharmacagon., vol. 2 ; p. 99-102. 
  13. Hyun KW, Kim JH, Song KJ, Lee JB, Jang JH, Kim YS, and Lee JS. 2003. Physiological functionality in Geumsan perilla leaves from greenhouse and field cultivation. Korean J Food Sci Technol, vol. 5 ; p. 975-979. 
  14. Kang BH, and Ryu MJ. 2021. Physiological activities of the neem and the comfrey extracts as cosmetic ingredients. Asian J. Beauty Cosmetol. vol. 19 : p. 223-234.  https://doi.org/10.20402/ajbc.2021.0165
  15. Kim EY, Baik IH, Kim JH, Kim SR, and Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol, vol. 2 ; p. 333-338. 
  16. Kim JB, Kim JB, Cho KJ, Hwang YS, and Park ND. 1999. Isolation, identification, and activity of rosmarinic acid, a potent antioxidant extracted from korean Agastache rugosa. J Korean Soc Appl Biol Chem, vol. 3 ; p. 262-266. 
  17. Kim NY, Park DS, and Lee HY. 2015. Effect of anti-Skin wrinkle and antioxidant of Agastache rugosa Kentz through fermentation process of the lactic acid. Korean J Medicinal Crop Sci, vol. 1 ; p. 37-42.  https://doi.org/10.7783/KJMCS.2015.23.1.37
  18. Kim SH, and Chung MJ. 2015. Safety and anticancer effects of Platycodon grandiflorum extracts. J Korean Soc Food Sci Nutr, vol. 4 ; p. 516-523  https://doi.org/10.3746/jkfn.2015.44.4.516
  19. Kim SS, Hyun CG, Choi YH, and Lee NH. 2013. Tyrosinase inhibitory activities of the compounds isolated from Neolitsea aciculata (Blume) Koidz. J Enzyme Inhib Med Chem, vol. 28 ; p. 685-689.  https://doi.org/10.3109/14756366.2012.670806
  20. Kim SS, Park KJ, Lee SE, Lee JH, and Choi YH. 2017. Antioxidant and anti-inflammatory effects of phenolic rich Hylotelephium erythrostictum extracts, Korean J. Food Preserv. vol. 24(6) ; p. 842-848.  https://doi.org/10.11002/kjfp.2017.24.6.842
  21. Lee DH, Kim DI, and Hong JH. 2015. Whitening and anti-wrinkle effects of polysaccharides from Ascidian tunic. J Chitin Chitosan, vol. 1 ; p. 1-9.  https://doi.org/10.17642/jcc.20.1.1
  22. Lee HK, Song HE, Lee HB, Kim CS, Koketsu M, Ngan L, and Ahn Y J. 2014. Growth Inhibitory, Bactericidal, and Morphostructural Effects of Dehydrocostus Lactone from Magnolia sieboldii Leaves on Antibiotic-Susceptible and Resistant Strains of Helicobacter pylor, PLOS ONE vol. 9(4) ; p. 1-10.  https://doi.org/10.1371/journal.pone.0095530
  23. Lee HS, Lee HA, Hong CO, Yang SY, Hong SY, Park SY, Lee HJ, and Lee KW. 2009. Quantification of caffeic acid and rosmarinic acid and antioxidant activities of hot-water extracts from leaves of Perilla frutescens. Kor J Food Sci Technol, vol. 3 ; p. 302-306. 
  24. Lee JY, Lee JN, Lee GT, and Lee KK. 2012. Development of Antimicrobial Plant Extracts and its Application to Cosmetics J. Soc. Cosmet. Scientists Korea vol. 38(2) ; p. 171-179.  https://doi.org/10.15230/SCSK.2012.38.2.171
  25. Lee MJ, and Moon GS. 2003. Antioxidant effects of korean ba,boo trees, wang-dae, som-dae, maengjong-juk, jolit-dae and o-juk. Korean J Food Sci Technol, vol. 35 ; p. 1226-1232. 
  26. Lee SG, Lee EJ, Park JB, and Choi SW. 2011. Antioxidant and anti-inflammatory activities of extracts from korean traditional medicinal prescriptions. Korean J Food Sci Technol, vol. 5 ; p. 624-632.  https://doi.org/10.9721/KJFST.2011.43.5.624
  27. lida T, and Ito K. 1983. Four neolignans from Magnolia liliflora. Phytochem. vol. 22 ; p. 763- 766.  https://doi.org/10.1016/S0031-9422(00)86979-4
  28. lida T, Ichino K, and Ito K. 1982, Neolignans from Magnolia denudata. Phytochem. vol. 21:p. 2939-2942.  https://doi.org/10.1016/0031-9422(80)85073-4
  29. Ozcan Erel. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochem. 37: 277-285.  https://doi.org/10.1016/j.clinbiochem.2003.11.015
  30. Park HJ. 1996. A New Aporphine-Type Alkaloid from the Leaves of Magnolia sieboldii K. Koch, Kor. J. Pharmacogn. vol. 27(2) ; p. 123-128. 
  31. Park HJ, Jung WT, Basnet P, Kadota S, and Namba, T. 1996. Magnolio side a new phenylpropanoid glycoside and costunolide. nitric oxide synthase inhibitor from the stem bark of Magnolia sieboldii. J. Nat. Prod. (submitted). 
  32. Park KB, Jung DS, Jin Y, Kim JH, Geum JH, and Lee JM. 2019. Establishment and validation of an analytical method for quality control of health functional foods derived from Agastache rugosa. The Korean Society of Analytical Science, vol. 3 ; p. 96-104. 
  33. Park SM, Oh MJ, Yeom HJ, Shim MO, and Lee JY. 2023. Various Physiological and Anti-inflammatory Effects of Sanguisorba officinalis L. Roots as a Functional Cosmetic Materia, Journal of Life Science vol. 33(5) : p. 406-413.  https://doi.org/10.5352/JLS.2023.33.5.406
  34. Shih MF, Cheng YD, Shen CR, and Cherng JY. 2010. A molecular pharmacology study into the anti-inflammatory actions of Euphorbia hirta L. on the LPS-induced RAW 264.7 cells through selective iNOS protein inhibition. J Nat Med, vol. 64 ; p. 330-335.  https://doi.org/10.1007/s11418-010-0417-6
  35. Song JH, Yang SG, Choi GY, Moon BC. 2020. Analysis on the trends of korean health functional food patent based on the medicinal plant resources. Korean Herb Med Inf, vol. 1 ; p. 25-44. 
  36. Tan Y, Shudo T, Yoshida T, Sugiyama Y, Si J, Tsukano C, Takemoto Y, and Kakizuka A. 2019. Ellagic acid, extracted from Sanguisorba ofcinalis, induces G1 arrest by modulating PTEN activity in B16F10 melanoma cells. Genes Cells. vol. 24(11) ; p. 688-704.  https://doi.org/10.1111/gtc.12719
  37. Wang TC, Ti MC, Ding H, Yao R. 2013. Do reactive oxygen species cause aging. Hanyang Medical Revies, vol. 33 ; p. 75-76.  https://doi.org/10.7599/hmr.2013.33.2.75
  38. Yi MR, and Bu HJ. 2017, Antioxidant, antimicrobial and melanogenesis inhibition effects of 35 species essential oil. J Kor Soc Cosm, vol. 23 ; p. 677-687. 
  39. Yoon ES. 1997. Effect of plant growth regulators on plant regeneration from leaf and stem explant cultures of Sedum erythrostichum Miq.. Korean J Plant Tissue Culture, vol. 24 ; p. 285-289. 
  40. Yoshida T, Mori K, Hatano T, Okumura T, Uehara I, Komagoe K, Fujita Y, and Okuda T. 1989. Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V. Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.  https://doi.org/10.1248/cpb.37.1919
  41. Young IS, and Mceneny. 2001, Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans, vol. 29 ; p. 358-694.  https://doi.org/10.1042/bst0290358
  42. Yun MS, Kim CH, and Hwang JK. 2019. Agastache rugosa Kuntze attenuates UVB-induced photoaging in hairless mice through the regulation of MAPK/AP-1 and TGF-β/ smad pathways. J Microbiol Biotechnol, vol. 9 ; 1349-1360.  https://doi.org/10.4014/jmb.1908.08020
  43. Yun JJ, and Park SK. 2022. In vitro antioxidant activities of Curcuma longa linne extracts according to exꠓtraction solvents. J. Kor. Soc. Food Sci. Nutr. vol. 51 : p. 1103-1108.  https://doi.org/10.3746/jkfn.2022.51.10.1103
  44. Zhang S, Liu X, Zhang ZL, He L, Wang Z, and Wang GS. 2012. Isolation and identification of the phenolic compounds from the roots of Sanguisorba officinalis L. and their antioxidant activities. Molecules, vol. 17(12) ; p. 13917-13922.  https://doi.org/10.3390/molecules171213917
  45. Zhao Z, He X, Zhang Q, Wei X, Huang L, Fang J, Wang X, Zhao M, Bai Y, and Zheng X. 2017. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Sanguisorba L. Am J Chin Med. vol. 45(2) ; p. 199-224. https://doi.org/10.1142/S0192415X17500136