DOI QR코드

DOI QR Code

Electromagnetic performance analysis of connected double-modulated axial magnetic gear embedded H-shaped pole shoes for generators

  • Bin Zhang (School of Science, East China Jiaotong University) ;
  • Jungang Wang (Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University) ;
  • Ruina Mo (School of Science, East China Jiaotong University)
  • Received : 2022.12.22
  • Accepted : 2023.09.08
  • Published : 2024.01.20

Abstract

With the development of new energy technologies, there has been an increasing demand for high-powered power generators. Therefore, high torque density and high stability transmission devices are needed to ensure the stable operation of generators. This paper proposes and investigates a connected double-modulated axial magnetic gear embedded H-shaped pole shoes (CDMHAMG) structure. This structure uses a spoke low-speed rotor with embedded H-shaped pole shoes and a connected modulation ring on the other side of the spoke rotor. The CDMHAMG can effectively increase the utilization of permanent magnets and suppress the leakage phenomenon, which greatly increases the torque density and suppress the torque ripple. To study the characteristics of the CDMHAMG, the electromagnetic performance of a conventional axial magnetic gear (CAMG), a spoke axial magnetic gear (SAMG), and different double-modulated axial magnetic gears are finite element analyzed. It can be found that the rotor torque density of the CMDHAMG is 80.18 kN/m3, which is 1.12 times that of the CAMG. In addition, the torque ripple of the CMDHAMG is 11.4%, which is 47.7% of that of the CAMG. Therefore, the CMDHAMG proposed in this paper has greater torque density and higher transmission stability than the CAMG and is more suitable for power generation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51765020), and the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB206153).

References

  1. Gong, Y., Yang, Z.B., Shan, X.B., Sun, Y.B., Xie, T., Zi, Y.L.: Capturing flow energy from ocean and wind. Energies 12(11), 1-23 (2019) https://doi.org/10.3390/en12112184
  2. Porte-Agel, F., Bastankhah, M., Shamsoddin, S.: Wind-turbine and wind-farm flows: a review. Bound. Layer Meteorol. 174(1), 1-59 (2020) https://doi.org/10.1007/s10546-019-00473-0
  3. Liu, X., Gao, R., Xue, Y.: Current situation and future development trend of floating offshore wind turbine. Distrib. Energy 5, 39-46 (2020)
  4. Lin, A.D., Hung, T.P., Kuang, J.H., Tsai, H.A.: Power flow analysis on the dual input transmission mechanism of small wind turbine systems. Appl. Sci. Basel 10(20), 1-14 (2020)
  5. Lan, Zhi, B.: A design of remote monitoring for fault diagnosis of wave generation system. Chap. 4. Guangdong University of Technology, Guangzhou (2018)
  6. Wang, J.G., Yang, S.N., Liu, Y.D., Mo, R.N.: Overview on main design theory and load sharing characteristics of planetary gear trains. J. East China Jiaotong Univ. 36(2), 111-118 (2019)
  7. Zhu, H., Zhu, Z., Xiao, Q., Wang, C., Yuan, Y., Xu, Q.: Research status of fatigue reliability and fault diagnosis of high-speed train gearbox. J. East China Jiaotong Univ. 38, 113-121 (2021)
  8. Dong, H., Bi, Y., Liu, Z.B., Zhao, X.L.: Establishment and analysis of nonlinear frequency response model of planetary gear transmission system. Mech. Sci. 12(2), 1093-1104 (2021) https://doi.org/10.5194/ms-12-1093-2021
  9. Rasmussen, P.O., Andersen, T.O., Jorgensen, F.T., Nielsen, O.: Development of a high-performance magnetic gear. IEEE Trans. Ind. Appl. 41(3), 764-770 (2005) https://doi.org/10.1109/TIA.2005.847319
  10. Desvaux, M., Sire, S., Hlioui, S., Ben Ahmed, H., Multon, B.: Development of a hybrid analytical model for a fast computation of magnetic losses and optimization of coaxial magnetic gears. IEEE Trans. Energy Convers. 34(1), 25-35 (2019) https://doi.org/10.1109/TEC.2018.2858859
  11. Jing, L., Gong, J., Ben, T.: Analytical method for magnetic field of eccentric magnetic harmonic gear. IEEE Access 8, 34236-34245 (2020) https://doi.org/10.1109/ACCESS.2020.2974777
  12. Uppalapati, K.K., Bird, J.Z.: An iterative magnetomechanical defection model for a magnetic gear. IEEE Trans. Magn. 50(2), 245-248 (2014) https://doi.org/10.1109/TMAG.2013.2283018
  13. Tsurumoto, K.: Generating mechanism of magnetic force in meshing area of magnetic gear using permanent magnet. IEEE Transl. J. Magn. Jpn. 6, 531-536 (1991) https://doi.org/10.1109/TJMJ.1991.4565201
  14. Jian, L.N., Chau, K.T., Li, W.L., Li, J.G.: A novel coaxial magnetic gear using bulk HTS for industrial applications. IEEE Trans. Appl. Supercond. 20(3), 981-984 (2010) https://doi.org/10.1109/TASC.2010.2040609
  15. Lee, R.W., Brewer, E.G., Schafel, N.: A. processing of neodymium-iron-boron melt-spun ribbons to fully dense magnets. IEEE T. Magn. 21,1958-1963 (1985) https://doi.org/10.1109/TMAG.1985.1064031
  16. Kikuchi, S., Tsurumoto, K.: Trial construction of a new magnetic skew gear using permanent magnet. IEEE Trans. Magn. 30, 4767-4769 (1994) https://doi.org/10.1109/20.334216
  17. Furlani, E.P.: A two-dimensional analysis for the coupling of magnetic gears. IEEE Trans. Magn. 33, 2317-2321 (1997) https://doi.org/10.1109/20.573848
  18. Yao, Y.D., Huang, D.R.: Simulation study of the magnetic coupling between radial magnetic gears. IEEE Trans. Magn. 33, 2203-2206 (1997) https://doi.org/10.1109/20.582770
  19. Huang, A.: The radial magnetic coupling studies between magnetic gears. IEEE Trans. Magn. 31, 3752-3754 (1995) https://doi.org/10.1109/20.489760
  20. Jang, G.H., Kim, C.W., Seo, S.W., Shin, K.H., Yoon, I.J., Choi, J.Y.: Torque characteristic analysis and measurement of magnetic rack-pinion gear based on analytical method. IEEE Trans. Magn. 55(7), 1-5 (2019) https://doi.org/10.1109/TMAG.2019.2900447
  21. Yin, X., Pfister, P.D., Fang, Y.T.: A novel magnetic gear: toward a higher torque density. IEEE Trans. Magn. 51(11), 1-15 (2015) https://doi.org/10.1109/TMAG.2015.2436058
  22. Uppalapati, K.K., Calvin, M.D., Wright, J.D., Pitchard, J., Williams, W.B., Bird, J.Z.: A magnetic gearbox with an active region torque density of 239 Nm/L. IEEE Trans. Ind. Appl. 54(2), 1331-1338 (2018) https://doi.org/10.1109/TIA.2017.2779418
  23. Li, K., Bird, J., Kadel, J., Williams, W.: A flux-focusing cycloidal magnetic gearbox. IEEE Trans. Magn. 51(11), 1-4 (2015)
  24. Shin, H.M., Chang, J.H.: Comparison of the characteristics in the surface mounted permanent magnet and flux concentrating coaxial magnetic gears having the solid cores. J. Electr. Eng. Technol. 13(3), 1275-1284 (2018)
  25. Acharya, V.M., Bird, J.Z., Calvin, M.: A fux focusing axial magnetic gear. IEEE Trans. Magn. 49(7), 4092-4095 (2013) https://doi.org/10.1109/TMAG.2013.2248703
  26. Kouhshahi, M.B., Bird, J.Z., Acharya, V.M., Li, K., Calvin, M., Williams, W., Modaresahmadi, S.: An axial flux focusing magnetically geared generator for low input speed applications. IEEE Trans. Ind. Appl. 56(1), 138-147 (2020) https://doi.org/10.1109/TIA.2019.2946120
  27. Hu, F., Zhou, Y.L., Cui, H.S., Liu, X.: Spectrum analysis and optimization of the axial magnetic gear with halbach permanent magnet arrays. Energies 12(10), 1-18 (2019) https://doi.org/10.3390/en12102003
  28. Afsari, S.A.: Optimal design and analysis of a novel reluctance axial flux magnetic gear. Sci. Iran. D 29(3), 1573-1580 (2022)
  29. Lang, J.W., Tong, C.D., et al.: Analytical modeling of an axial flux magnetic-geared double rotor machine with interior-modulating-rotor. IEEE Trans. Magn. 58(2), 1-6 (2022) https://doi.org/10.1109/TMAG.2021.3078841
  30. Bilal, M., Ikram, J., Fida, A., Fida, A., Haider, N., Ro, J.S.: Performance improvement of dual stator axial flux spoke type permanent magnet Vernier machine. IEEE Access 9, 64179-64188 (2021) https://doi.org/10.1109/ACCESS.2021.3076111
  31. Ge, Y.J., Liu, F.L., Wang, D.M., Liu, D.L.: Design and characteristic analysis of dual-excitation and dual-modulation axial permanent magnetic gear. Revista Internacional de Metodos Numericos Para Calculo y Diseno en Ingenieria 38(4), 1-12 (2022) https://doi.org/10.23967/j.rimni.2022.12.001