DOI QR코드

DOI QR Code

Role of vitamin D for orthodontic tooth movement, external apical root resorption, and bone biomarker expression and remodeling: A systematic review

  • Martina Ferrillo (Dentistry Unit, Department of Health Sciences, Magna Graecia University of Catanzaro) ;
  • Dario Calafiore (Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma) ;
  • Lorenzo Lippi (Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont ) ;
  • Francesco Agostini (Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University) ;
  • Mario Migliario (Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont ) ;
  • Marco Invernizzi (Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont ) ;
  • Amerigo Giudice (Dentistry Unit, Department of Health Sciences, Magna Graecia University of Catanzaro) ;
  • Alessandro de Sire (Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro)
  • Received : 2023.04.10
  • Accepted : 2023.09.18
  • Published : 2024.01.25

Abstract

Objective: This systematic review aimed to evaluate the correlation between vitamin D levels and the rate of tooth movement, external apical root resorption, bone biomarker expression, and bone remodeling. Methods: Three databases (PubMed, Scopus, and Web of Science) were systematically searched from inception until 14th March 2023 to identify studies investigating the correlation between orthodontic tooth movement and vitamin D in animals and humans. The quality assessment was made in accordance with the Joanna Briggs Institute Critical Appraisal Checklist. Results: Overall, 519 records were identified, and 19 were selected for the qualitative synthesis. Eleven studies investigated the effect of local administration (injections in the periodontal ligament, to the gingiva distal to the teeth, or submucosae palatal area) and systemic administration (oral supplementation) of vitamin D on tooth movement, external apical root movement, pro-inflammatory cytokines, and bone remodeling factors. The remaining eight studies investigated the correlation between serum vitamin D levels and salivary vitamin D levels on bone turnover markers and tooth movement. Conclusions: The findings of this systematic review support that vitamin D3 local injections might increase the rate of tooth movement via the receptor activator of the nuclear factor-kB/osteoprotegerin axis. However, the non-uniform study designs and the different protocols and outcome methods make it challenging to draw reliable conclusions.

Keywords

References

  1. Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod 2014;15:65. https://doi.org/10.1186/s40510-014-0065-6
  2. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 2006;28:221-40. https://doi.org/10.1093/ejo/cjl001
  3. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006;129:458-68. https://doi.org/10.1016/j.ajodo.2005.12.013
  4. Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 2009;12:113-9. https://doi.org/10.1111/j.1601-6343.2009.01444.x
  5. Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, et al. Forceinduced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 2000;15:1924-34. https://doi.org/10.1359/jbmr.2000.15.10.1924
  6. Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The effect of inflammation on bone. Front Physiol 2021;11:511799. https://doi.org/10.3389/fphys.2020.511799
  7. Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res 1996;75:562-7. https://doi.org/10.1177/00220345960750010801
  8. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 2006;85:751-6. https://doi.org/10.1177/154405910608500812
  9. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One 2015;10:e0138189. https://doi.org/10.1371/journal.pone.0138189
  10. Kuchler EC, Schroder A, Teodoro VB, Nazet U, Scariot R, Spanier G, et al. The role of 25-hydroxyvitamin-D3 and vitamin D receptor gene in human periodontal ligament fibroblasts as response to orthodontic compressive strain: an in vitro study. BMC Oral Health 2021;21:386. https://doi.org/10.1186/s12903-021-01740-8
  11. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 2004;19:265-9. https://doi.org/10.1359/jbmr.2004.19.2.265
  12. Iolascon G, Moretti A, de Sire A, Calafiore D, Gimigliano F. Effectiveness of calcifediol in improving muscle function in post-menopausal women: a prospective cohort study. Adv Ther 2017;34:744-52. https://doi.org/10.1007/s12325-017-0492-0
  13. Li B, Zhang YH, Wang LX, Li X, Zhang XD. Expression of OPG, RANKL, and RUNX2 in rabbit periodontium under orthodontic force. Genet Mol Res 2015;14:19382-8. https://doi.org/10.4238/2015.December.29.48
  14. Yu X, Zong X, Pan Y. Associations between vitamin D receptor genetic variants and periodontitis: a meta-analysis. Acta Odontol Scand 2019;77:484-94. https://doi.org/10.1080/00016357.2019.1597160
  15. Ferrillo M, Lippi L, Giudice A, Calafiore D, Paolucci T, Reno F, et al. Temporomandibular disorders and vitamin D deficiency: what is the linkage between these conditions? A systematic review. J Clin Med 2022;11:6231. https://doi.org/10.3390/jcm11216231
  16. Ferrillo M, Migliario M, Roccuzzo A, MolineroMourelle P, Falcicchio G, Umano GR, et al. Periodontal disease and vitamin D deficiency in pregnant women: which correlation with preterm and low-weight birth? J Clin Med 2021;10:4578. https://doi.org/10.3390/jcm10194578
  17. Ferrillo M, Migliario M, Marotta N, Lippi L, Antonelli A, Calafiore D, et al. Oral health in breast cancer women with vitamin D deficiency: a machine learning study. J Clin Med 2022;11:4662. https://doi.org/10.3390/jcm11164662
  18. Arqub SA, Gandhi V, Iverson MG, Ahmed M, Kuo CL, Mu J, et al. The effect of the local administration of biological substances on the rate of orthodontic tooth movement: a systematic review of human studies. Prog Orthod 2021;22:5. https://doi.org/10.1186/s40510-021-00349-5
  19. Al-Attar A, Abid M, Dziedzic A, Al-Khatieeb MM, Seppala M, Cobourne MT, et al. The impact of calcitriol on orthodontic tooth movement: a cumulative systematic review and meta-analysis. Appl Sci 2021;11:8882. https://doi.org/10.3390/app11198882
  20. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71
  21. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 2015;13:147-53. https://doi.org/10.1097/XEB.0000000000000054
  22. Al-hasani NR, Al-bustani AI, Ghareeb MM, Hussain SA. Clinical efficacy of locally injected calcitriol in orthodontic tooth movement. Int J Pharm Pharm Sci 2011;5:139-43. https://d1wqtxts1xzle7.cloudfront.net/66870183/CLINICAL_EFFICACY_OF_LOCALLY_INJECTED_CA20210504-24281-ddxdes.pdf?1620114250=&response-content-disposition=inline%3B+filename%3DClinical_Efficacy_of_Locally_Injected_Ca.pdf&Expires=1701758593&Signature=d-ZJgk~ThTLt7nJY7CFIoSpXtJkBtc1S-3ozaAspvEJxRiQXcLNp5oYQ6~NSp-qg8cwWY1co6uWFAi1U7NI-dBg1oiv-CDsi9RxNwGi6w4zw~VQJZyD-Fv-h8z9B3JmxDGbS2FSjetrym~B5J9JxNGQWfcMvSEIdVNEKjUuTmH7FxA2gCl-7VQ2D8b7my61rp8YNfSFCF~X4QypmuDpRFOhg40WHHNy-lFJSiWticvx5JKBZwAYKaot7j3EH3B9lAc~FO9-rOntGwWRTGwXJr54CZDnacoBcOrFMz7VStRUW3wOD-8rEX-dJJjo49TT1NRPJhfIvl2BRLuGJ2bvdPw__&Key-PairId=APKAJLOHF5GGSLRBV4ZA
  23. Iosub Ciur MD, Zetu IN, Haba D, Viennot S, Bourgeois D, Andrian S. Evaluation of the influence of local administration of vitamin D on the rate of orthodontic tooth movement. Rev Med Chir Soc Med Nat Iasi 2016;120:694-99. https://pubmed.ncbi.nlm.nih.gov/30148332/
  24. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1988;94:278-84. https://doi.org/10.1016/0889-5406(88)90052-2
  25. Cui J, Li J, Wang W, Han X, Du J, Sun J, et al. The effect of calcitriol on high mobility group box 1 expression in periodontal ligament cells during orthodontic tooth movement in rats. J Mol Histol 2016;47:221-8. https://doi.org/10.1007/s10735-016-9669-0
  26. Fontana ML, de Souza CM, Bernardino JF, Hoette F, Hoette ML, Thum L, et al. Association analysis of clinical aspects and vitamin D receptor gene polymorphism with external apical root resorption in orthodontic patients. Am J Orthod Dentofacial Orthop 2012;142:339-47. https://doi.org/10.1016/j.ajodo.2012.04.013
  27. Kale S, Kocadereli I, Atilla P, Asan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004;125:607-14. https://doi.org/10.1016/j.ajodo.2003.06.002
  28. Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab 2004;22:541-6. https://doi.org/10.1007/s00774-004-0521-3
  29. Khalaf RM, Almudhi AA. Effects of vitamin D deficiency on the rate of orthodontic tooth movement: an animal study. Saudi Dent J 2022;34:129-35. https://doi.org/10.1016/j.sdentj.2021.12.008
  30. Khalaf RM, Almudhi AA. The effect of vitamin D deficiency on the RANKL/OPG ratio in rats. J Oral Biol Craniofac Res 2022;12:228-32. https://doi.org/10.1016/j.jobcr.2022.02.004
  31. Leszczyszyn A, Hnitecka S, Dominiak M. Could vitamin D3 deficiency influence malocclusion development? Nutrients 2021;13:2122. https://doi.org/10.3390/nu13062122
  32. Takano-Yamamoto T, Kawakami M, Kobayashi Y, Yamashiro T, Sakuda M. The effect of local application of 1,25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res 1992;71:53-9. https://doi.org/10.1177/00220345920710010901
  33. Tashkandi N, Zhao Y, Mitchell-Lee G, Stephens D, Patel M, Motro M, et al. Longitudinal assessment of salivary vitamin D binding protein during orthodontic tooth movement. BMC Oral Health 2021;21:332. https://doi.org/10.1186/s12903-021-01689-8
  34. Tehranchi A, Sadighnia A, Younessian F, Abdi AH, Shirvani A. Correlation of vitamin D status and orthodontic-induced external apical root resorption. Dent Res J (Isfahan) 2017;14:403-11. https://doi.org/10.4103/1735-3327.218565
  35. Varughese ST, Shamanna PU, Goyal N, Thomas BS, Lakshmanan L, Pulikkottil VJ, et al. Effect of vitamin D on canine distalization and alveolar bone density using multi-slice spiral CT: a randomized controlled trial. J Contemp Dent Pract 2019;20:1430-5. https://doi.org/10.5005/jp-journals-10024-2698
  36. Al-Attar A, Abid M. The effect of vitamin D3 on the alignment of mandibular anterior teeth: a randomized controlled clinical trial. Int J Dent 2022;2022:6555883. https://doi.org/10.1155/2022/6555883
  37. Azizi F, Karami N, Golshah A, Imani MM, SafariFaramani R. Effect of serum level of vitamin D on external apical root resorption in maxillary anterior teeth in patients under fixed orthodontic treatment. Int J Dent 2022;2022:7942998. https://doi.org/10.1155/2022/7942998
  38. Gratton MP, Londono I, Rompre P, Villemure I, Moldovan F, Nishio C. Effect of vitamin D on bone morphometry and stability of orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2022;162:e319-27. https://doi.org/10.1016/j.ajodo.2022.08.019
  39. Maranon-Vasquez G, Kuchler EC, Hermann S, Paddenberg E, Schroder A, Baratto-Filho F, et al. Association between genetic variants in key vitamin-Dpathway genes and external apical root resorption linked to orthodontic treatment. Eur J Oral Sci 2023;131:e12916. https://doi.org/10.1111/eos.12916
  40. Moradinejad M, Yazdi M, Mard SA, Razavi SM, Shamohammadi M, Shahsanaei F, et al. Efficacy of the systemic co-administration of vitamin D3 in reversing the inhibitory effects of sodium alendronate on orthodontic tooth movement: a preliminary experimental animal study. Am J Orthod Dentofacial Orthop 2022;162:e17-27. https://doi.org/10.1016/j.ajodo.2021.11.014
  41. Institute TJB. JBI critical appraisal tools [Internet]. Adelaide: Institute TJB; 2017 [cited 2023 Sep 21]. Available from: https://jbi.global/critical-appraisaltools
  42. Kuchler EC, Schroder A, Corso P, Scariot R, Spanier G, Proff P, et al. Genetic polymorphisms influence gene expression of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. Odontology 2020;108:493-502. https://doi.org/10.1007/s10266-019-00475-x
  43. Mitsea A, Palikaraki G, Karamesinis K, Vastardis H, Gizani S, Sifakakis I. Evaluation of lateral incisor resorption caused by impacted maxillary canines based on CBCT: a systematic review and metaanalysis. Children (Basel) 2022;9:1006. https://doi.org/10.3390/children9071006
  44. Nieto-Nieto N, Solano JE, Yanez-Vico R. External apical root resorption concurrent with orthodontic forces: the genetic influence. Acta Odontol Scand 2017;75:280-7. https://doi.org/10.1080/00016357.2017.1294260
  45. Bizzarro M, Generali C, Maietta S, Martorelli M, Ferrillo M, Flores-Mir C, et al. Association between 3D palatal morphology and upper arch dimensions in buccally displaced maxillary canines early in mixed dentition. Eur J Orthod 2018;40:592-6. https://doi.org/10.1093/ejo/cjy023
  46. Hasan HS, Elkolaly MA, Elmoazen R, Kolemen A, Al Azzawi AM. Factors that guide the diagnosis and treatment planning for impacted canines using threedimensional cone-beam computed tomography: a cross-sectional study. Int J Dent 2022;2022:7582449. https://doi.org/10.1155/2022/7582449
  47. Ferrillo M, Migliario M, Curci C, Roccuzzo A, Invernizzi M, de Sire A. Reliability of dental calcification compared to hand-wrist X-ray to evaluate skeletal maturation in growing subjects: a systematic review. J Biol Regul Homeost Agents 2021;35:717-23. https://doi.org/10.23812/21-106-L
  48. Gonzales C, Hotokezaka H, Yoshimatsu M, Yozgatian JH, Darendeliler MA, Yoshida N. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod 2008;78:502-9. https://doi.org/10.2319/052007-240.1
  49. Kuchler EC, Schroder A, Spanier G, Thedei G Jr, Carvalho Ribeiro de Oliveira MB, de Menezes-Oliveira MAH, et al. Influence of single-nucleotide polymorphisms on vitamin D receptor expression in periodontal ligament fibroblasts as a response to orthodontic compression. Int J Mol Sci 2022;23:15948. https://doi.org/10.3390/ijms232415948
  50. Booij-Vrieling HE, Ferbus D, Tryfonidou MA, Riemers FM, Penning LC, Berdal A, et al. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats. Eur J Oral Sci 2010;118:39-46. https://doi.org/10.1111/j.1600-0722.2009.00707.x
  51. Yang CY, Jeon HH, Alshabab A, Lee YJ, Chung CH, Graves DT. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci 2018;10:3. https://doi.org/10.1038/s41368-017-0004-8
  52. Nebel D, Svensson D, Arosenius K, Larsson E, Jonsson D, Nilsson BO. 1α,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res 2015;50:666-73. https://doi.org/10.1111/jre.12249
  53. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000;192:565-70. https://doi.org/10.1084/jem.192.4.565
  54. Kirschneck C, Proff P, Maurer M, Reicheneder C, Romer P. Orthodontic forces add to nicotineinduced loss of periodontal bone: an in vivo and in vitro study. J Orofac Orthop 2015;76:195-212. https://doi.org/10.1007/s00056-015-0283-7
  55. Madureira DF, Taddei Sde A, Abreu MH, Pretti H, Lages EM, da Silva TA. Kinetics of interleukin-6 and chemokine ligands 2 and 3 expression of periodontal tissues during orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2012;142:494-500. https://doi.org/10.1016/j.ajodo.2012.05.012
  56. Fonseca JE, Santos MJ, Canhao H, Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 2009;8:538-42. https://doi.org/10.1016/j.autrev.2009.01.012